BOUNDEDLY COMPLETE BASIC SEQUENCES, c0-SUBSPACES, AND INJECTIONS OF BANACH SPACES

BY

V.P. FONF*

Department of Mathematics, Ben-Gurion University of the Negev .P.O.B. 653, Beer Sheva 84105, Israel

ABSTRACT

We study the connection between topological properties of subsets of a given Banach space and their images under linear, continuous one-to-one mappings on the one hand and the existence in a given Banach space of either a boundedly complete basic sequence (BCBS) or an isomorphic copy of c_0 (c_0 -subspace) on the other hand. We present criteria for the existence of a BCBS. They are deduced from new characterisations of G_{δ} embeddings which we also present. We obtain a necessary and sufficient condition for separability of a dual Banach space in terms of saturation by BCBS. Criteria for the existence in a Banach space of a c_0 -subspace are also presented. We describe the class of separable Banach spaces which contains either a BCBS or a c_0 -subspace.

Introduction

The series of striking counterexamples that were constructed recently by Gowers and Maurey [11] and Gowers [12] completely dispersed all hopes of a simple lineartopological structure of infinite-dimensional Banach spaces. The most delicate conjecture:

Every infinite-dimensional Banach space contains either a *boundedly complete basic sequence (BCBS) or a subspace isomorphic to the space* c_o *(* c_o *-subspace)*

has been disproved also.

^{*} This research was supported by the Rashi Foundation. Received June 8, 1992 and in revised form March 7, 1994

The main purpose of this paper is to describe the class K of separable Banach spaces that contains either a BCBS or a c_0 -subspace. It turned out that the separable Banach space E belonging to the class K is equivalent to the existence of an injection $T: E \to X$ (by injection we mean a linear continuous one-to-one map into some Banach space X with unbounded inverse T^{-1}) with special properties. We will be interested in properties of the injections T that are connected with Borelian type of images TA (of some subsets $A \subset E$) both in the whole space X and in the image *TE.* Let us note that topological properties of the set *TA* in the image TE coincide with those of the set A in the X-topology on the space E (by X-topology on the space E we mean the topology that is generated by sets $T^{-1}(G)$ where G is an open subset of the space X; for example, an X-ball in the space E is the set $T^{-1}(B)$ where B is some ball in the space X). To distinguish the X -topology and the original norm-topology on the space E , we will denote the latter by E -topology.

The above-mentioned characterization of the class K is contained in the following theorem.

THEOREM 7: *Let E be a separable Banach space. Then the following assertions* are *equivalent:*

 (1) $E \in \mathcal{K}$.

(2) There exist an injection $T: E \to X$ (into some Banach space X) and a non*empty bounded open subset* $A \subset E$ *such that either the image TA is of the type* $G_{\delta\sigma}$ in the space X or the image TA is of the type G_{δ} in the image TE.

(3) There exist an injection $T: E \to Y$ (into some Banach space Y) and a non*empty bounded open subset* $B \subset E$ *such that either the image TB is of the type* F_{σ} in the space *Y* or the image $T(cB)$ is of the type F_{σ} in the image TE.

We will examine this theorem by two approaches. The treatment from the BCBS is contained in part 1. The main tool here will be the notion of a G_{δ} -embedding that was introduced and studied by Bourgain and Rosenthal [1]. We recall that an injection $T: E \to X$ of the Banach space E into the Banach space X is a G_{δ} -embedding iff the image TA of every closed, bounded and separable subset $A \subset E$ is a G_{δ} -set in the space X. Important properties of G_{δ} -embeddings were obtained by Ghoussoub and Maurey [9,10]. The papers of Edgar and Wheeler [2] and Rosenthal [18] discuss closely related topics. We will use some ideas from these papers as well as from previous papers of the

author $[4-7]$.

The main results of part 1 are Theorem 1, which gives the characterization of G_{δ} -embeddings, and Theorem 2, which gives the most general criterion for the existence of BCBS in a given Banach space (in terms of injections).

The approach to Theorem 7 from a c_{o} -subspace is contained in part 2. We will use here a notion of a set of super-first category that was introduced by the author in his paper [8]. The main result of part 2 is Theorem 5, which characterizes Banach spaces that contain a c_o -subspace.

The short part 3 combines results of parts 1 and 2.

We will assume that all Banach spaces considered are real and infinite dimensional (unless specified otherwise). We use standard Banach space theory notations as can be found in [16], to which we refer the reader for unexplained terminology. By $U(E)$ ($S(E)$) we denote the unit ball (unit sphere) of the linear normed space E. In part 1, $T: E \rightarrow X$ denotes an injection into the Banach space X .

1. Injections and BCBS

Let $\epsilon: \Sigma \to R_+$ be a map from the set Σ of all ordered finite subsets of the unit sphere $S(E)$ into the set of positive numbers R_+ . We will say that the map ϵ is a T-regulator of boundedly complete basic sequences (briefly: T-RBCBS) iff every sequence $x_n \subset S(E)$ possessing the following property:

(*) For every
$$
n = 1, 2, ..., ||Tx_{n+1}|| \le \epsilon(\{x_i\}_1^n)
$$

is BCBS.

It is obvious that every X-null sequence $\{x_n\} \subset S(E)$ (i.e. a null-sequence in the X-topology) has a subsequence possessing the property $(*)$. So existence of T -RBCBS implies: every X -null sequence from a unit sphere has a subsequence which is BCBS.

We will use the following

PROPOSITION 1: [17] Let E be a separable Banach space. The following asser*tions are equivalent:*

(1) T^*X^* is a norming linear manifold.

- (2) T^{-1} belongs to the first Baire class.
- (3) $X \text{cl } U(E)$ is a bounded subset of the space E.

Remark 1: If T^*X^* is 1-norming then the unit ball $U(E)$ is X-closed.

The following theorem is the main result of this part.

THEOREM 1: Let $T: E \to X$ be an injection of the separable Banach space E *into the Banach space X such that* T^{-1} *is a map of the first Baire class. The following assertions* are *equivalent:*

(1) There exists the bounded subset $D \subset E$ such that its image TD is a G_{δ} -set *in X and E -* cl *D contains some E-ball.*

(2) *There exists a T-RBCBS.*

(3) The map T is a G_{δ} -embedding.

Proof: Since T^{-1} is a map of the first Baire class the linear manifold T^*X^* is norming. Without loss of generality we can assume that T^*X^* is 1-norming (and therefore (Remark 1) the unit ball $U(E)$ is X-closed) and $||T|| \leq 1$.

 $(1) \Rightarrow (2)$. Let $G = TD = \bigcap_{1}^{\infty} G_n$, where each set G_n is an open subset of the space X. Without loss of generality we can assume that $E - \text{cl } D \supset 2U(E)$ and $0 \in D$. Denoting $D_n = T^{-1}(G_n)$ we have $D = \bigcap_{1}^{\infty} D_n$. Since T^{-1} is a map of the first Baire class, there exists a sequence ${g_n}$ of continuous mappings $g_n: TE \to E$ such that, for all $x \in E$, $\lim g_n(Tx) = x$. Put

$$
\omega(g, x, \delta) = \sup \{ \alpha : ||x - y|| \leq \alpha \Rightarrow ||g(x) - g(y)|| \leq \delta \}.
$$

Let $\{\delta_n\}$ be a sequence of positive numbers such that

$$
\sum_{1}^{\infty} \delta_n < 1/8, \quad \prod_{1}^{\infty} (1 + \delta_n) / (1 - 2\delta_n) \leq 2.
$$

We begin the construction of the map ϵ with $n = 1$. Let $x_1 \in S(E)$; then there exists an element \bar{x}_1 possessing the properties:

(a) $||x_1 - \bar{x}_1|| < \delta_1$.

(b) There exists a δ_1 -net $\{t_i^1\bar{x}_1\}_{i=1}^{l_1}$ in the segment $[-\bar{x}_1, \bar{x}_1]$ which is contained in the set D_1 , i.e.

$$
\{t_i^1\bar{x}_1\}_1^{l_1} \subset [-\bar{x}_1,\bar{x}_1] \cap D_1
$$

(recall that the open set D_1 is dense in the set $2U(E)$). Put

$$
d(x_1) = d_X(\{Tt_i^1\bar{x}_1\}_1^{l_1}, \partial G_1).
$$

It is evident that there exists a number $r(x_1)$ such that, for all $i = 1, 2, \ldots, l_1$ and $m \geq r(x_1)$,

$$
||g_m(T(t_i^1\bar{x}_1))-t_i^1\bar{x}_1|| < \delta_1.
$$

Denote

$$
t(x_1)=\min\{\omega(g_{r(x_1)},t_i^1\bar{x}_1,\delta_1): i=1,2,\ldots,l_1\}.
$$

Since the linear manifold T^*X^* is 1-norming, there exists a linear functional $h_1 \in X^*$ such that $||T^*h_1|| = 1$ and $(T^*h_1)(x_1) \geq (1 - \delta_1)$. Finally, put

$$
\epsilon({x_1}) = \min\{d(x_1), t(x_1)\}\delta_1^2(8||h_1||||T||)^{-1}.
$$

Now we will define the map ϵ on two-element subsets $\{x_1, x_2\} \subset S(E)$. Since the open set D_2 is dense in the ball $2U(E)$ there exists a vector \bar{x}_2 possessing the properties:

(a) $||x_2 - \bar{x}_2|| < \epsilon({x_1}).$

(b) There exists a δ_2 -net $\{t_i^2 \bar{x}_2\}_1^{l_2}$ in the segment $[-\bar{x}_2, \bar{x}_2]$ which is contained in the set D_2 and the set

$$
A(x_1, x_2) = \{t_i^1 \bar{x}_1 + t_j^2 \bar{x}_2 \in U(E) : 1 \le i \le l_1, 1 \le j \le l_2\}
$$

is also contained in D_2 . Put

$$
d(x_1,x_2)=d_X(TA(x_1,x_2),\partial G_2).
$$

Let $r(x_1, x_2)$ be such a number that for all $m \ge r(x_1, x_2)$ and for all $x \in A(x_1, x_2)$, $||g_m(Tx) - x|| < \delta_2$. Denote

$$
t(x_1, x_2) = \min \{ \omega(g_{r(x_1, x_2)}, x, \delta_2) : x \in A(x_1, x_2) \}.
$$

Since the linear manifold T^*X^* is 1-norming, there exists a finite subset $\{h_i\}_{1}^{m_2} \subset$ X^* such that ${T^*h_i}_{1}^{m_2} \subset S(E^*)$ and the set

$$
\{(T^*h_i)|_{[x_1,x_2]}\}_{1}^{m_2}
$$

is a δ_2 -net in the ball $U([x_1, x_2]^*)$. We denote by $[x, y]$ the linear span of x and y. Finally, put

$$
\epsilon({x_1,x_2}) = \min_{1 \leq k \leq 2} \{d({x_i}_1)_1^k), t({x_i}_1)_1^k)\}\delta_2^2(8||T||\max {\{||h_i||: i = 1,...,m_2\}})^{-1}.
$$

Continuing in such a way we construct the map $\epsilon: \Sigma \to R_+$. Now let the sequence ${y_i} \subset S(E)$ satisfy $||Ty_{n+1}|| \le \epsilon({y_i}_1^n)$ for all $n = 1, 2, \ldots$. We have to prove that $\{y_i\}$ is a BCBS. At first we will check that $\{y_i\}$ is a basic sequence. Here we act standardly:

$$
\|\sum_{1}^{n} a_{i}y_{i}\| \leq (1 - \delta_{n})^{-1} \max\left\{ |T^{*}h_{i}\left(\sum_{1}^{n} a_{i}y_{i}\right)| : 1 \leq i \leq m_{n} \right\}
$$

= $(1 - \delta_{n})^{-1} \max\left\{ |T^{*}h_{i}\left(\sum_{1}^{n+1} a_{i}y_{i}\right) - T^{*}h_{i}(a_{n+1}y_{n+1})| : 1 \leq i \leq m_{n} \right\}$
 $\leq (1 - \delta_{n})^{-1} \left(\max\left\{ ||T^{*}h_{i}|| || \sum_{1}^{n+1} a_{i}y_{i}|| : 1 \leq i \leq m_{n} \right\}$
+ $|a_{n+1}| \max\{|h_{i}(Ty_{n+1})| : 1 \leq i \leq m_{n}\}\right),$

but

$$
|a_{n+1}| \leq \big\|\sum_{1}^{n+1} a_i y_i\big\| + \big\|\sum_{1}^{n} a_i y_i\big\|
$$

and

$$
|h_i(Ty_{n+1})| \le ||h_i|| ||Ty_{n+1}|| < \delta_n.
$$

Therefore

$$
\left\|\sum_{1}^{n} a_{i} y_{i}\right\| \leq (1-\delta_{n})^{-1} \left(\left\|\sum_{1}^{n+1} a_{i} y_{i}\right\| + \delta_{n} \left(\left\|\sum_{1}^{n+1} a_{i} y_{i}\right\| + \left\|\sum_{1}^{n} a_{i} y_{i}\right\|\right)\right)
$$

and we have finally

$$
\|\sum_{1}^{n} a_i y_i\| \leq (1+\delta_n)(1-2\delta_n)^{-1} \|\sum_{1}^{n+1} a_i y_i\|.
$$

Using the inequality

$$
\prod_{1}^{\infty} (1+\delta_n)(1-2\delta_n)^{-1} \leq 2
$$

we get that $\{y_i\}$ is a basic sequence with basis constant less than 2. By the Krein-Milman-Rutman stability theorem (recall that $\Sigma_1^{\infty} \delta_n < 1/8$) it is easily verified that ${~} \{{\bar y}_i \}$ (${\bar y}_i$ has the same sense with respect to y_i as ${\bar x}_i$ has with respect to x_i) is a basic sequence which is equivalent to $\{y_i\}$. Direct verification shows that the basis constant of $\{\bar{y}_i\}$ is less than 5. So it will be enough to check that ${\bar{y}_i}$ is a BCBS. We begin with the weaker property. Namely, let

(1)
$$
\sup \left\{ \|\sum_{1}^{n} t_{i_k}^k \bar{y}_k\|: n = 1, 2, \ldots \right\} < 1/10.
$$

Let us check that the series $\sum t_{i_k}^k \bar{y}_k$ converges. We have

$$
||T\bar{y}_k|| \leq ||T(y_k - \bar{y}_k)|| + ||Ty_k|| \leq (1 + ||T||)\epsilon(\{y_i\}_1^{k-1}) < 2\delta_{k-1}
$$

and from (1) we get $|t_{i_k}^k| \leq 1, k = 1, 2, \ldots$. So the series $\sum t_{i_k} T \bar{y}_k$ converges. Put $x_o = \sum t_{i_k}^k T \bar{y}_k$. Let us show that for all $n = 1, 2, ..., x_o \in G_n$. We have

$$
\|\sum_{n+1}^{\infty} t_{i_k}^k T \bar{y}_k\| \leq \sum_{n+1}^{\infty} \|T \bar{y}_k\| \leq (1 + \|T\|) \sum_{n+1}^{\infty} \epsilon(\{y_i\}_1^{k-1})
$$

$$
\leq 2 \sum_{n+1}^{\infty} \delta_{k-1} d(\{y_i\}_1^{k-1}) \leq 2d(\{y_i\}_1^n) \sum_{1}^{\infty} \delta_k \leq d(\{y_i\}_1^n)/4
$$

Since $\sum_{i=1}^{n} i_{i_k}^k \bar{y}_k \in U(E)$, and by the definition of $d({y_i}_1^n)$, we get that $x_o \in G_n$, $n = 1, 2, \ldots$ So $x_o \in \bigcap_{1}^{\infty} G_n \subset TE$ and therefore $\lim g_n(x_o)$ exists. Denoting $r_n = r({y_i}_1^n)$ we have:

$$
||g_{r_n}(x_o) - \sum_{1}^{n} t_{i_k}^k \bar{y}_k||
$$

\n
$$
= ||g_{r_n}\left(\sum_{1}^{\infty} t_{i_k}^k T \bar{y}_k\right) - g_{r_n}\left(\sum_{1}^{n} t_{i_k}^k T \bar{y}_k\right) + g_{r_n}\left(\sum_{1}^{n} t_{i_k}^k T \bar{y}_k\right) - \sum_{1}^{n} t_{i_k}^k \bar{y}_k||
$$

\n
$$
\leq ||g_{r_n}\left(\sum_{1}^{n} t_{i_k}^k T \bar{y}_k + \sum_{n+1}^{\infty} t_{i_k}^k T \bar{y}_k\right) - g_{r_n}\left(\sum_{1}^{n} t_{i_k}^k T \bar{y}_k\right)||
$$

\n
$$
+ ||g_{r_n}\left(\sum_{1}^{n} t_{i_k}^k T \bar{y}_k\right) - \sum_{1}^{n} t_{i_k}^k \bar{y}_k||.
$$

But

$$
\|\sum_{n+1}^{\infty} t_{i_k}^k T \bar{y}_k\| \leq \sum_{n+1}^{\infty} \|T \bar{y}_k\| \leq 2 \sum_{n+1}^{\infty} \epsilon(\{y_i\}_1^{k-1})
$$

$$
\leq 2t(\{y_i\}_1^n) \sum_{n=1}^{\infty} \delta_k \leq 1/4\omega \left(g_{r_n}, \sum_{n=1}^n t_{i_k}^k T \bar{y}_k, \delta_n\right)
$$

180 **V.P. FONF** Isr. J. Math.

and therefore

$$
\left\|g_{r_n}(x_o)-\sum_1^n t_{i_k}^k\tilde{y}_k\right\|<2\delta_n.
$$

Now it is easily seen that the series $\Sigma t_{i_k}^k \bar{y}_k$ converges. Finally let $\sup\{\|\sum_{i=1}^{n} p_k \bar{y}_k\|: n = 1, 2, \ldots\} \leq 1/20$. Then $\sup |p_k| < 1/2$ and hence, for each integer k, there exists a number $t_{i_k}^k$ such that $|p_k - t_{i_k}^k| \leq \delta_k$. Thus

$$
\sup\big\|\sum_1^n t_{i_k}^k\bar{y}_k\big\|\leq 1/4
$$

and, as proved above, the series $\sum t_{i}^{k} \bar{y}_{k}$ (and hence also $\sum p_{k} \bar{y}_{k}$) converges. This completes the proof of implication $(1) \Rightarrow (2)$.

 $(2) \Rightarrow (3)$. It is evident that for every sequence $\{x_i\} \subset S(E)$ the series $\Sigma \epsilon (\{x_i\}_{i=1}^n)$ converges. To prove $(2) \Rightarrow (3)$ assume the contrary, i.e. T is not G_{δ} -embedding. Then from [9] there exist a number $\delta > 0$ and a sequence $\{y_i\} \subset$ $U(E)$ such that $||y_i - y_j|| \ge \delta, i \ne j$, but the sequence $\{Ty_i\}$ is dense in itself. Put $x_1 = y_1, e_o = x_1/||x_1||$ and choose an element y_{n_2} such that

$$
||Ty_1-Ty_{n_2}|| < \delta\epsilon(\lbrace e_o \rbrace).
$$

Put $x_2 = y_{n_2}, e_{11} = (x_1 - x_2)/||x_1 - x_2||$. Then

(2)
$$
||Tx_1 - Tx_2|| < \delta \epsilon(\{e_o\}), \quad ||Te_{11}|| < \epsilon(\{e_o\}).
$$

Using density of the sequence $\{Ty_i\}$ in itself again we choose an element y_{n_3} such that $||Tx_1-Ty_{n_3}|| < \delta\epsilon(\{e_0, e_{11}\})$. Put $x_3 = y_{n_3}$ and $e_{21} = (x_1 - x_3)/||x_1 - x_3||$. Then

(3)
$$
||Tx_1 - Tx_3|| < \delta \epsilon (\{e_o, e_{11}\}), \quad ||Te_{21}|| < \epsilon (\{e_o, e_{11}\}).
$$

Let y_{n_4} be such an element that $||Tx_2 - Ty_{n_4}|| < \delta\epsilon(\lbrace e_0, e_{11}, e_{21} \rbrace)$. Denoting $x_4 = y_{n_4}, e_{22} = (x_2 - x_4)/\|x_2 - x_4\|$ we obtain

(4)
$$
||Tx_2 - Tx_4|| < \delta \epsilon (\{e_0, e_{11}, e_{21}\}), \quad ||Te_{22}|| < \epsilon (\{e_0, e_{11}, e_{21}\}).
$$

The sequence $\{e_0, e_{ij}\}$ will be constructed in this way. By condition (2) of the theorem, $\{e_o, e_{ij}\}$ is BCBS. Let $\{z_i\}$ be the sequence $\{e_o, e_{ij}\}$ that is numerated

by one index and put $Y = [z_i]_1^{\infty}$. We shall show that $T|_Y$ is a G_{δ} -embedding. Let us introduce the new norm

$$
|||y||| = \sup ||\sum_{1}^{n} a_i z_i||, \quad y = \sum a_i z_i
$$

in Y which is equivalent to the original one. Denote by $V = \{y \in Y: |||y||| \leq 1\}$ the unit ball in the new norm. We will show that the image *TV* is closed in the space X . Put

$$
u_m = \sum a_i^m z_i \in V, \quad m = 1, 2, ..., \quad \lim T u_m = v.
$$

Without loss of generality we can assume that for all $i = 1, 2, \ldots$ there exists $\lim a_i^m = a_i$. It is evident that $\sup \| \sum_{i=1}^{n} a_i z_i \| \leq 1$. Since $\{z_i\}$ is a BCBS series $\Sigma a_i z_i$ converges to some element u. Hence $u = \Sigma a_i z_i \in V$. Fix ϵ and choose a number n such that $\sum_{n=1}^{\infty} \epsilon({z_i}_{1}^{k-1}) < \epsilon/16$. There exists a number m such that, for all $i = 1, ..., n$, $|a_i^m - a_i| < \epsilon/(4n||T||)$. We have:

$$
||Tu_m - Tu|| \le ||\sum_1^n (a_i^m - a_i)Tz_i|| + ||\sum_{n+1}^\infty (a_i^m - a_i)Tz_i|| < \epsilon.
$$

Hence $\lim_{m \to \infty} T u_m = Tu, u \in V, v = Tu$ and therefore $v \in TV$. Thus $T|_Y$ is a semi-embedding and, since Y is separable, T is a G_{δ} -embedding. But the image ${Tx_i}$ of δ -separated sequence ${x_i} \subset U(Y)$ (remember that ${x_i} \subset {y_i}$) is dense in itself (see (2), (3), (4)). This is impossible [9]. So implication (2) \Rightarrow (3) is proved.

Implication (3) \Rightarrow (1) is evident. The proof of the theorem is completed. \Box

Remark 2: If an injection $T: E \to X$ of a separable Banach space E into a Banach space X is a G_{δ} -embedding, then T^{-1} belongs to the first Baire class (see [1, 6]).

Remark *3:* We do not use the separability of the space E in the proof of implication $(1) \Rightarrow (2)$.

The following theorem gives the most general (in terms of injections) criterion for the existence of BCBS in a given separable Banach space without the assumption that T^{-1} belongs to the first Baire class.

THEOREM 2: Let $T: E \to X$ be an injection of a separable Banach space E into *a Banach space X. If there exists a bounded subset* $D \subset E$ *which is dense in* some ball of the space E and whose image TD is a G_{δ} -set in the space X, then $E \supset BCBS$.

Proof: If the inverse mapping T^{-1} belongs to the first Baire class, then by Theorem 1, $E \supset BCBS$. Suppose that T^{-1} does not belong to the first Baire class. Hence, by Proposition 1, the set $X - \text{cl } U(E)$ is unbounded. Denote $V = cT U(E)$ and, by Z, the Banach space linV with the set V as the unit ball. Let $T_1: E \to Z$, $T_2: Z \to X$ be natural embeddings. Since the set $X - \text{cl} U(E)$ is unbounded, it follows that T_1 is not an isomorphic embedding. We will show that the inverse mapping T_1^{-1} belongs to the first Baire class, or equivalently (by Proposition 1): $Z-\text{cl }U(E)$ is bounded in the space E. Without loss of generality we may assume that $E - \text{cl } D \supset U(E)$. By the conditions of the theorem, there exists a sequence $\{G_n\}$ of open subsets of the space X such that $TD = \bigcap G_n$. Denote $D_n = T^{-1}(G_n)$ and let $y_o \in Z - \text{cl } U(E), y = 1/2y_o$. It is evident that y belongs to the algebraic interior of the set $Z - \text{cl } U(E)$. Hence there exists a number $\gamma > 0$ such that $y + \gamma U(E) \subset Z - \text{cl } U(E)$. We will consider two cases. (1) For every $\delta \in (0, \gamma), D \cap (y + \delta U(E)) \neq \emptyset$. Then $y \in E - \text{cl } D$ and therefore

$$
\sup\{\|y_o\|: y_o \in Z - \mathrm{cl}\, U(E)\} \leq 2 \sup\{\|z\|: z \in E - \mathrm{cl}\, D\}.
$$

(2) There exists $\delta \in (0, \gamma), D \cap (y + \delta U(E)) = \emptyset$.

Then by $D = \bigcap D_k$ we have $(y + \delta U(E)) \subset \bigcup cD_k$. By the Baire category theorem, there exist a number m and an E-ball $W \subset y + \delta U(E)$ such that $cD_m \supset W$. Since the set cD_m is X-closed, we obtain

$$
(5) \t\t X - cl W \subset cD_m.
$$

On the other hand,

$$
W\subset y+\gamma U(E)\subset Z-\operatorname{cl} U(E)\subset Z-\operatorname{cl} D
$$

hence $(X - \text{cl }W) \cap D \neq \emptyset$ (the set $X - \text{cl }W$ is a Z-ball in the space E and therefore it is a Z-neighborhood for every point from the algebraic interior of the set W). We have obtained the contradiction to (5) .

Thus the set $Z - \text{cl } U(E)$ is bounded and, by Proposition 1, inverse mapping T_1^{-1} belongs to the first Baire class. But $T_1D = \bigcap T_2^{-1}(G_n)$ and every set $T_2^{-1}(G_n)$ is open in the space Z. So by Theorem 1 (applied to the injection $T_1: E \to Z$, $E \supset BCBS$. The proof is completed.

The following corollary is a consequence of Theorem 2 and the Baire category theorem.

COROLLARY 1: Let $T: E \to X$ be an injection of a separable Banach space E into a Banach space *X* such that the image $TU(E)$ of the unit ball $U(E)$ of the space *E* is a $G_{\delta\sigma}$ -set in the space *X*. Then $E \supset BCBS$.

Remark 4: The restriction on the Borel type of the image *TU(E)* cannot be weakened (if we want to say anything about the space E) because for every injection $T: E \to X$ with the inverse from the first Baire class, for any separable Banach space E, the image $TU(E)$ is an $F_{\sigma\delta}$ -set in X [7].

Now we pass to the characterization of separability of the dual space E^* in terms of the saturation by BCBS.

Let $W: \Sigma \to \mathcal{B}$ be a map of the set of all ordered finite subsets of the unit sphere $S(E^*)$ into the set B of all w^{*}-neighborhoods of zero in the unit ball $U(E^*)$. We will say that the map W is a w^{*}-regulator of boundedly complete basic sequences (briefly: w*-RBCBS) if and only if every sequence $\{f_n\} \subset S(E^*)$ possessing the property:

(**) For all
$$
n = 1, 2, ..., f_{n+1} \in W(\{f_i\}_1^n)
$$

is BCBS.

It is obvious that every w^{*}-null sequence $\{f_n\} \subset S(E^*)$ has a subsequence possessing the property (**). Let us note that according to the well-known result of Johnson and Rosenthal [13] every w^* -null sequence from the unit sphere of a separable dual space has a BCB subsequence. Thus the following theorem strengthens the result of Johnson and Rosenthal bringing it to a necessary and sufficient condition.

THEOREM 3: *Let E be a separable Banach space. The following assertions* are *equivalent:*

(1) *The dual space E* is separable.*

(2) There exists a *w*-RBCBS.*

Proof: (1) \Rightarrow (2). Let A: $l_2 \rightarrow E$ be some compact operator from the separable Hilbert space l_2 into the space E with dense range. Denote $T = A^* : E^* \rightarrow$ l_2 . Then T is a semi-embedding (the image of the unit ball is closed) and, by separability of the space E^* , it follows that T is a G_{δ} -embedding [1]. Now assertion (2) follows from Theorem 1 ((3) \Rightarrow (2)) since w*-topology on the unit ball $U(E^*)$ coincides with the l_2 -topology.

 $(2) \Rightarrow (1)$. Let T be the operator introduced above. With the help of Theorem 1 $(2) \Rightarrow (3)$) it is easily verified that T is a G_{δ} -embedding (recall that the notion of G_6 -embedding is separable defined). We will prove that every w^{*}-compact subset $K \subset U(E^*)$ is w^{*}-huskable (i.e. for every $\epsilon > 0$ and every w^{*}-open subset D possessing the property $D \cap K \neq \emptyset$ there exists a w*-open subset $D_1 \subset D$ such that $D_1 \cap K \neq \emptyset$ and $\text{diam}(D_1 \cap K) < \epsilon$). Let $\{f_i\}$ be a countable w^{*}-dense subset of the set K (the space E is separable) and D be an w^* -open subset of the space E^* such that $D \cap K \neq \emptyset$. Denote $K_1 = ||\cdot|| - c \cdot [f_i]_1^{\infty}$ and $K_2 = ||\cdot|| - c \cdot [(K_1 \cap D)]$. So K_2 is a non-empty (by w^{*}-density of the set K_1 in the set K and by $K \cap D \neq \emptyset$) separable bounded closed subset as well as K_1 . Since T is a G_{δ} -embedding there exists [9] a point of continuity of the map $T^{-1}|_{TK_2}$. Hence by compactness of the operator T there exists a point $g \in K_2$ and w*-open neighborhood D_1 of g such that $D_1 \cap K_2 \neq \emptyset$ and $\text{diam}(D_1 \cap K_2) < \epsilon$. As the set $K_1 \cap D$ is dense in the set K_2 , there exists an element $g_1 \in (K_1 \cap D) \cap D_1$. Denoting $D_2 = D \cap D_1$ we get $D_2 \cap K_1 \neq \emptyset$. Since $K_1 \cap D_2 = (K_1 \cap D) \cap D_1 \subset K_2$ and $D_2 \subset D$, then $K_1 \cap D_2 \subset K_2 \cap D_1$ and by diam $(K_2 \cap D_1) < \epsilon$ we have diam $(K_1 \cap D_2) < \epsilon$. It is clear that $\text{diam}(w^* - \text{cl}(K_1 \cap D_2)) < \epsilon$ also. But $w^* - \text{cl}(K_1 \cap D_2) \supset (K \cap D_2)$ by w^{*}-density of the set $K \cap D_2$. Thus, $\text{diam}(K \cap D_2) < \epsilon$. So we have proved that every w^* -compact subset of the dual space E^* is w^* -huskable. By the result of Kenderov [14] the space E^* possesses the RN-property. But the space E is separable, therefore by a result of Stegall [19] the space E^* is separable too. The proof is completed. I

2. Injections and c_o -subspaces

Let $T: E \to X$ be an injection of a Banach space E into a topological vector space X. We will say [8] that a subset $C \subset E$ is of the super-first category if and only if it can be covered by a countable union of X-closed and E -nowhere dense sets. We will use the following theorem [8].

THEOREM 4: Let a Banach space E allow an injection $T: E \rightarrow X$ in some *Hausdorff topological vector* space X such that there exists a *closed bounded* solid (i.e. with non-empty interior) subset $A \subset E$ with the boundary ∂A of super-first category. Then $E \supset c_o$. Conversely, if a separable Banach space *E* contains a c_0 -subspace, then there exist an injection $T: E \to X$ (into some *Banach space X)* even with T^{-1} from the first Baire class and an equivalent norm $|||.|||$ on the space E such that the unit sphere $S(E, |||.|||)$ *(i.e. the boundary of the unit ball) is of super-first category.*

The following theorem is based on Theorem 4.

THEOREM 5: Let $T: E \rightarrow X$ be an injection of a Banach space *E* into a *Hausdorff topological vector* space *X. Let there exist a non-empty open bounded* subset $G \subset E$ and a subset $C \subset G$ (possibly empty) of the super-first category such that the set $G \setminus C$ is a G_{δ} -set in the X-topology in the closure $E - \text{cl } G$. *Then* $E \supset c_o$.

Proof: Denote $A = E - c \cdot dG$. By the conditions of the theorem, $G \setminus C = \bigcap G_n$ where each subset $G_n \subset A$ is X-open in A. Hence $A \setminus (G \setminus C) = (A \setminus G) \cup C =$ $\cup V_n$, where each subset $V_n \subset A$ is X-closed in A. Since G is an open subset of the space E, it follows that $\partial A = A \setminus G$ and therefore $\partial A \subset \bigcup V_n$. It is clear that each subset V_n is X-closed in the set A and nowhere dense $(V_n$ is norm-closed and $V_n \subset \partial A \cup C$). To complete the proof it remains to apply Theorem 4.

Remark 4: If E is separable and $U(E)$ is closed in the X-topology then the condition: " $(G \setminus C)$ is a G_{δ} -set in X-topology in the set $E - \text{cl } G$ " is equivalent to the following one: " $(G \setminus C)$ is a G_{δ} -set in X-topology in the whole space E".

Before stating the corollary we introduce some notation. For subsets B and C of a Banach space E we will denote by

$$
\delta(B,C)=\sup\{d(x,C)\colon x\in B\}
$$

the deviation of the set B from the set C .

COROLLARY 2: Let $T: E \to X$ be an injection of a Banach space *E* into a *Hausdorff topological* vector *space X. Suppose that* there *exists a closed bounded* *subset* $A \subset E$ possessing the property: $\partial A \subset \bigcup V_n$, $A \setminus \bigcup V_n \neq \emptyset$ where each *subset* V_n *is an X-closed subset of the set A and* $\lim \delta(V_n, \partial A) = 0$ *. Then E* $\supset c_o$ *. Proof:* Denote $G = A \setminus \bigcup V_n$. It is clear that the subset $G \subset A$ is a G_{δ} -set in Xtopology on A. We will show that G is an open subset of the space E. Let $x \in G$. It is evident that $x \in (\text{int}A)$ (intA is the interior of the set A in E-topology) and therefore there exists a number $r > 0$ such that $x + 2rU(E) \subset (int A)$. Since for every $y + rU(E)$, $d(y, \partial A) \geq r$ and $\lim \delta(V_n, \partial A) = 0$, it follows that there exists an integer m such that for every $n > m$, $V_n \cap (x + rU(E)) = \emptyset$. Denoting $\delta = \min\{1/2d(x, V_n), 1/2r: 1 \leq n \leq m\}$ we get $x + \delta U(E) \subset G$. Application of Theorem 5 ($C = \emptyset$) completes the proof.

In connection with Theorem 5 it is interesting to consider the class A of all separable Banach spaces possessing the property: $E \in A$ if and only if there exists an open bounded subset $G \subset E$ which is a G_{δ} -set in the space E in the weak topology.

PROPOSITION 2: *A separable* Banach *space E belongs to the class A if* and only if there exists an open bounded subset $G \subset E$ which is a G_{δ} -set in the set $\|.\|$ - cl *G* in w-topology.

Proof: The proof follows from the observation: $E \setminus (||.||-c|G)$ is an open subset of the separable Banach space E and hence it can be covered by a countable union of closed (both in norm and weak topologies) balls. |

Since the property $E \in \mathcal{A}$ is a hereditary one for subspaces of the space E, the where the corollary follows from Theorem 5 ($C = \emptyset$).

COROLLARY 3: *Each Banach space from the class ,4 contains an isomorphic copy of the space Co hereditarily.*

Let us note that the class A is polar (but not opposite) to the class of Polish spaces [2, 18].

Remember that a Banach space is called polyhedral [15] if and only if the unit ball of every finite-dimensional subspace is a polyhedron.

PROPOSITION 3: *Every separable polyhedral Banach space belongs to the class .4.*

Proof: According to [3] a separable polyhedral Banach space E possesses a countable boundary, i.e. there exists a sequence $\{f_i\} \subset S(E^*)$ of linear functionals such that, for every $x \in E$, there exists functional f_j for which $f_j(x) = ||x||$.

Let $G = (intU(E))$; then $G = \bigcap \{x \in E : f_i(x) < 1\}$ and therefore G is a G_{δ} -set in the space E in the w-topology. \Box

We conclude this section by the following

Problem: Is the property $E \in \mathcal{A}$ inherited by quotient spaces of the space E? What about polyhedral space E?

3. Resume

Theorem 7 is a consequence of the results of previous sections (Theorem 2, Theorem 4, Theorem 5 ($C = \emptyset$) and the following result of the author [5].

THEOREM 6: *Let a separable Banach space E contain a BCBS. Then there* exists a non-isomorphic semi-embedding $T: E \to X$ into some Banach space X.

THEOREM 7: *Let E be a separable Banach* space. *Then the following assertions* are *equivalent:*

(1) $E \in \mathcal{K}$

(2) There exist an injection $T: E \to X$ (into some Banach space X) and a non-empty bounded open subset $A \subset E$ such that either the image TA is of the *type* $G_{\delta\sigma}$ in the space *X* or the image *TA* is of the type G_{δ} in the image *TE*.

(3) There exist an injection $T: E \to Y$ (into some Banach space Y) and a non*empty bounded open subset* $B \subset E$ *such that either the image TB is of the type* F_{σ} in the space Y or the image $T(cB)$ is of the type F_{σ} in the image TE.

ACKNOWLEDGEMENT: The author is greatly indebted to the referee for many helpful suggestions.

References

- [1] J. Bourgain and H.P. Rosenthal, *Applications of the theory of semi-embeddings to Banach space theory,* Journal of Functional Analysis 52 (1983), 149-188.
- [2] G.A. Edgar and R.F. Wheeler, *Topological properties of Banach spaces,* Pacific Journal of Mathematics 115 (1984), 317-350.
- [3] V.P. Fonf, *On polyhedral Banach spaces,* Matematicheskie Zametki 30 (1981), 627-634 (Russian); English Transl. in Mathematical Notes 30 (1981).
- [4] V.P. Fonf, *On injections of* Banach *spaces with closed* image *of the unit ball,* Funktsionalnyi Analiz i ego Prilozheniya 19 (1985), 87-88 (Russian); English Transl. in Functional Analysis and its Applications 19 (1985).
- [5] V.P. Fonf, On *semi-embeddings* and *G6-embeddings of Banach spaces,* Matematicheskie Zametki 39 (1986), 550-561 (Russian); English Transl. in Mathematical Notes 39 (1986).
- [6] V.P. Fonf, *Dual subspaces* and *injections of Banach spaces,* Ukrainski Matematicheski Zhurnal 39 (1987), 364-369 (Russian); English Transl. in Ukrainian Mathematical Journal 39 (1987).
- [7] V.P. Fonf, On *Borelian type of the set* of *convergence of the sequence linear* bounded operators in Banach space, Teoriya Funktsii, Funktsional'nyi Analiz ikh Prilozheniya 50 (1988), 90-98 (Russian); English Transl. in Journal of Soviet Mathematics 49 (1990), no. 6.
- [8] V.P. Fonf, *Sets of the super-first category in* Banach *spaces,* Funktsionalnyi Analiz i ego Prilozeniya 25 (1991), 66-69 (Russian); English Transl. in Functional Analysis and its Applications 25 (1991).
- [9] N. Ghoussoub and B. Maurey, G_{δ} -embeddings in Hilbert space, Journal of Functional Analysis 61 (1985), 72-97.
- [10] N. Ghoussoub and B. Maurey, G_{δ} -embeddings in Hilbert space (part 2), Journal of Functional Analysis 78 (1988), 271-305.
- [11] W.T. Gowers and B. Maurey, *The unconditional basic sequence problem,* preprint.
- [12] W.T. Gowers, *A space not containing c_o*, *l*₁ or reflexive subspace, preprint.
- [13] W.B. Johnson and H.P. Rosenthal, On *w'-basic sequences* and *their applications to the study of Banach spaces,* Studia Mathematica 43 (1972), 77-92.
- [14] P. Kenderov, *Dense strong continuity of pointwise continuous mappings,* Pacific Journal of Mathematics 89 (1980), 111-130.
- [15] V. Klee, *Polyhedral sections of convex bodies,* Acta Mathematica 103 (1960), 243-267.
- [16] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces 1,* Springer-Verlag, New York, 1977.
- [17] Ju.I. Petunin and A.N. Plichko, *Theory of Characteristics of Subspaces and Its Applications,* Kiev, 1980 (Russian).
- [18] H.P. Rosenthal, *Weak*-Polish Banach spaces,* Journal of Functional Analysis **76** (1988), 267-316.
- [19] C. Stegall, *The Radon-Nikodym property in conjugate Banach spaces* (part 2), Transactions of the American Mathematical Society 264 (1981), 507-519.