BOUNDEDLY COMPLETE BASIC SEQUENCES, c_0 -SUBSPACES, AND INJECTIONS OF BANACH SPACES

BY

V.P. Fonf*

Department of Mathematics, Ben-Gurion University of the Negev .P.O.B. 653, Beer Sheva 84105, Israel

ABSTRACT

We study the connection between topological properties of subsets of a given Banach space and their images under linear, continuous one-to-one mappings on the one hand and the existence in a given Banach space of either a boundedly complete basic sequence (BCBS) or an isomorphic copy of c_o (c_o -subspace) on the other hand. We present criteria for the existence of a BCBS. They are deduced from new characterisations of G_{δ} -embeddings which we also present. We obtain a necessary and sufficient condition for separability of a dual Banach space in terms of saturation by BCBS. Criteria for the existence in a Banach space of a c_o -subspace are also presented. We describe the class of separable Banach spaces which contains either a BCBS or a c_o -subspace.

Introduction

The series of striking counterexamples that were constructed recently by Gowers and Maurey [11] and Gowers [12] completely dispersed all hopes of a simple lineartopological structure of infinite-dimensional Banach spaces. The most delicate conjecture:

Every infinite-dimensional Banach space contains either a boundedly complete basic sequence (BCBS) or a subspace isomorphic to the space c_o (c_o -subspace)

has been disproved also.

^{*} This research was supported by the Rashi Foundation. Received June 8, 1992 and in revised form March 7, 1994

The main purpose of this paper is to describe the class \mathcal{K} of separable Banach spaces that contains either a BCBS or a c_o -subspace. It turned out that the separable Banach space E belonging to the class \mathcal{K} is equivalent to the existence of an injection $T: E \to X$ (by injection we mean a linear continuous one-to-one map into some Banach space X with unbounded inverse T^{-1}) with special properties. We will be interested in properties of the injections T that are connected with Borelian type of images TA (of some subsets $A \subset E$) both in the whole space Xand in the image TE. Let us note that topological properties of the set TA in the image TE coincide with those of the set A in the X-topology on the space E(by X-topology on the space E we mean the topology that is generated by sets $T^{-1}(G)$ where G is an open subset of the space X; for example, an X-ball in the space E is the set $T^{-1}(B)$ where B is some ball in the space X). To distinguish the X-topology and the original norm-topology on the space E, we will denote the latter by E-topology.

The above-mentioned characterization of the class \mathcal{K} is contained in the following theorem.

THEOREM 7: Let E be a separable Banach space. Then the following assertions are equivalent:

(1) $E \in \mathcal{K}$.

(2) There exist an injection $T: E \to X$ (into some Banach space X) and a nonempty bounded open subset $A \subset E$ such that either the image TA is of the type $G_{\delta\sigma}$ in the space X or the image TA is of the type G_{δ} in the image TE.

(3) There exist an injection $T: E \to Y$ (into some Banach space Y) and a nonempty bounded open subset $B \subset E$ such that either the image TB is of the type F_{σ} in the space Y or the image T(cB) is of the type F_{σ} in the image TE.

We will examine this theorem by two approaches. The treatment from the BCBS is contained in part 1. The main tool here will be the notion of a G_{δ} -embedding that was introduced and studied by Bourgain and Rosenthal [1]. We recall that an injection $T: E \to X$ of the Banach space E into the Banach space X is a G_{δ} -embedding iff the image TA of every closed, bounded and separable subset $A \subset E$ is a G_{δ} -set in the space X. Important properties of G_{δ} -embeddings were obtained by Ghoussoub and Maurey [9,10]. The papers of Edgar and Wheeler [2] and Rosenthal [18] discuss closely related topics. We will use some ideas from these papers as well as from previous papers of the

author [4-7].

The main results of part 1 are Theorem 1, which gives the characterization of G_{δ} -embeddings, and Theorem 2, which gives the most general criterion for the existence of BCBS in a given Banach space (in terms of injections).

The approach to Theorem 7 from a c_o -subspace is contained in part 2. We will use here a notion of a set of super-first category that was introduced by the author in his paper [8]. The main result of part 2 is Theorem 5, which characterizes Banach spaces that contain a c_o -subspace.

The short part 3 combines results of parts 1 and 2.

We will assume that all Banach spaces considered are real and infinite dimensional (unless specified otherwise). We use standard Banach space theory notations as can be found in [16], to which we refer the reader for unexplained terminology. By U(E) (S(E)) we denote the unit ball (unit sphere) of the linear normed space E. In part 1, $T: E \to X$ denotes an injection into the Banach space X.

1. Injections and BCBS

Let $\epsilon: \Sigma \to R_+$ be a map from the set Σ of all ordered finite subsets of the unit sphere S(E) into the set of positive numbers R_+ . We will say that the map ϵ is a *T*-regulator of boundedly complete basic sequences (briefly: *T*-RBCBS) iff every sequence $x_n \subset S(E)$ possessing the following property:

(*) For every
$$n = 1, 2, ..., ||Tx_{n+1}|| \le \epsilon(\{x_i\}_1^n)$$

is BCBS.

It is obvious that every X-null sequence $\{x_n\} \subset S(E)$ (i.e. a null-sequence in the X-topology) has a subsequence possessing the property (*). So existence of T-RBCBS implies: every X-null sequence from a unit sphere has a subsequence which is BCBS.

We will use the following

PROPOSITION 1: [17] Let E be a separable Banach space. The following assertions are equivalent:

(1) T^*X^* is a norming linear manifold.

(2) T^{-1} belongs to the first Baire class.

(3) $X - \operatorname{cl} U(E)$ is a bounded subset of the space E.

Remark 1: If T^*X^* is 1-norming then the unit ball U(E) is X-closed.

The following theorem is the main result of this part.

THEOREM 1: Let $T: E \to X$ be an injection of the separable Banach space E into the Banach space X such that T^{-1} is a map of the first Baire class. The following assertions are equivalent:

(1) There exists the bounded subset $D \subset E$ such that its image TD is a G_{δ} -set in X and $E - \operatorname{cl} D$ contains some E-ball.

(2) There exists a T-RBCBS.

(3) The map T is a G_{δ} -embedding.

Proof: Since T^{-1} is a map of the first Baire class the linear manifold T^*X^* is norming. Without loss of generality we can assume that T^*X^* is 1-norming (and therefore (Remark 1) the unit ball U(E) is X-closed) and $||T|| \leq 1$.

(1) \Rightarrow (2). Let $G = TD = \bigcap_{1}^{\infty} G_n$, where each set G_n is an open subset of the space X. Without loss of generality we can assume that $E - \operatorname{cl} D \supset 2U(E)$ and $0 \in D$. Denoting $D_n = T^{-1}(G_n)$ we have $D = \bigcap_{1}^{\infty} D_n$. Since T^{-1} is a map of the first Baire class, there exists a sequence $\{g_n\}$ of continuous mappings $g_n: TE \to E$ such that, for all $x \in E$, $\lim g_n(Tx) = x$. Put

$$\omega(g, x, \delta) = \sup \{ \alpha \colon ||x - y|| \le \alpha \Rightarrow ||g(x) - g(y)|| \le \delta \}.$$

Let $\{\delta_n\}$ be a sequence of positive numbers such that

$$\sum_{1}^{\infty} \delta_n < 1/8, \quad \prod_{1}^{\infty} (1+\delta_n)/(1-2\delta_n) \leq 2.$$

We begin the construction of the map ϵ with n = 1. Let $x_1 \in S(E)$; then there exists an element \bar{x}_1 possessing the properties:

(a) $||x_1 - \bar{x}_1|| < \delta_1$.

(b) There exists a δ_1 -net $\{t_i^1 \bar{x}_1\}_{i=1}^{l_1}$ in the segment $[-\bar{x}_1, \bar{x}_1]$ which is contained in the set D_1 , i.e.

$$\{t_i^1 \bar{x}_1\}_1^{l_1} \subset [-\bar{x}_1, \bar{x}_1] \cap D_1$$

(recall that the open set D_1 is dense in the set 2U(E)). Put

$$d(x_1) = d_X(\{Tt_i^1\bar{x}_1\}_1^{l_1}, \partial G_1).$$

176

Vol. 89, 1995

It is evident that there exists a number $r(x_1)$ such that, for all $i = 1, 2, ..., l_1$ and $m \ge r(x_1)$,

$$||g_m(T(t_i^1\bar{x}_1)) - t_i^1\bar{x}_1|| < \delta_1.$$

Denote

$$t(x_1) = \min \{ \omega(g_{r(x_1)}, t_i^1 \bar{x}_1, \delta_1) : i = 1, 2, \dots, l_1 \}.$$

Since the linear manifold T^*X^* is 1-norming, there exists a linear functional $h_1 \in X^*$ such that $||T^*h_1|| = 1$ and $(T^*h_1)(x_1) \ge (1 - \delta_1)$. Finally, put

$$\epsilon(\{x_1\}) = \min \{ d(x_1), t(x_1) \} \delta_1^2(8 \| h_1 \| \| T \|)^{-1}.$$

Now we will define the map ϵ on two-element subsets $\{x_1, x_2\} \subset S(E)$. Since the open set D_2 is dense in the ball 2U(E) there exists a vector \bar{x}_2 possessing the properties:

(a) $||x_2 - \bar{x}_2|| < \epsilon(\{x_1\}).$

(b) There exists a δ_2 -net $\{t_i^2 \bar{x}_2\}_1^{l_2}$ in the segment $[-\bar{x}_2, \bar{x}_2]$ which is contained in the set D_2 and the set

$$A(x_1, x_2) = \{t_i^1 \bar{x}_1 + t_j^2 \bar{x}_2 \in U(E) : 1 \le i \le l_1, 1 \le j \le l_2\}$$

is also contained in D_2 . Put

$$d(x_1, x_2) = d_X(TA(x_1, x_2), \partial G_2).$$

Let $r(x_1, x_2)$ be such a number that for all $m \ge r(x_1, x_2)$ and for all $x \in A(x_1, x_2)$, $\|g_m(Tx) - x\| < \delta_2$. Denote

$$t(x_1, x_2) = \min \{ \omega(g_{r(x_1, x_2)}, x, \delta_2) \colon x \in A(x_1, x_2) \}.$$

Since the linear manifold T^*X^* is 1-norming, there exists a finite subset $\{h_i\}_1^{m_2} \subset X^*$ such that $\{T^*h_i\}_1^{m_2} \subset S(E^*)$ and the set

$$\{(T^*h_i)|_{[x_1,x_2]}\}_1^{m_2}$$

is a δ_2 -net in the ball $U([x_1, x_2]^*)$. We denote by [x, y] the linear span of x and y. Finally, put

$$\epsilon(\{x_1, x_2\}) = \min_{1 \le k \le 2} \{ d(\{x_i\}_1^k), t(\{x_i\}_1^k) \} \delta_2^2(8 \|T\| \max \{\|h_i\|: i = 1, \dots, m_2\})^{-1}.$$

V.P. FONF

Continuing in such a way we construct the map $\epsilon: \Sigma \to R_+$. Now let the sequence $\{y_i\} \subset S(E)$ satisfy $||Ty_{n+1}|| \leq \epsilon(\{y_i\}_1^n)$ for all $n = 1, 2, \ldots$. We have to prove that $\{y_i\}$ is a BCBS. At first we will check that $\{y_i\}$ is a basic sequence. Here we act standardly:

$$\begin{split} \left\|\sum_{1}^{n} a_{i} y_{i}\right\| &\leq (1-\delta_{n})^{-1} \max\left\{\left|T^{*} h_{i}\left(\sum_{1}^{n} a_{i} y_{i}\right)\right| : 1 \leq i \leq m_{n}\right\} \\ &= (1-\delta_{n})^{-1} \max\left\{\left|T^{*} h_{i}\left(\sum_{1}^{n+1} a_{i} y_{i}\right) - T^{*} h_{i}(a_{n+1} y_{n+1})\right| : 1 \leq i \leq m_{n}\right\} \\ &\leq (1-\delta_{n})^{-1} \left(\max\left\{\left\|T^{*} h_{i}\right\|\right\|\sum_{1}^{n+1} a_{i} y_{i}\right\| : 1 \leq i \leq m_{n}\right\} \\ &+ |a_{n+1}| \max\{|h_{i}(T y_{n+1})| : 1 \leq i \leq m_{n}\}), \end{split}$$

but

$$|a_{n+1}| \le \left\|\sum_{1}^{n+1} a_i y_i\right\| + \left\|\sum_{1}^{n} a_i y_i\right\|$$

 and

$$|h_i(Ty_{n+1})| \le ||h_i|| ||Ty_{n+1}|| < \delta_n$$

Therefore

$$\left\|\sum_{1}^{n} a_{i} y_{i}\right\| \leq (1-\delta_{n})^{-1} \left(\left\|\sum_{1}^{n+1} a_{i} y_{i}\right\| + \delta_{n} \left(\left\|\sum_{1}^{n+1} a_{i} y_{i}\right\| + \left\|\sum_{1}^{n} a_{i} y_{i}\right\|\right)\right)$$

and we have finally

$$\left\|\sum_{1}^{n} a_{i} y_{i}\right\| \leq (1+\delta_{n})(1-2\delta_{n})^{-1} \left\|\sum_{1}^{n+1} a_{i} y_{i}\right\|$$

Using the inequality

$$\prod_{1}^{\infty} (1+\delta_n)(1-2\delta_n)^{-1} \le 2$$

we get that $\{y_i\}$ is a basic sequence with basis constant less than 2. By the Krein-Milman-Rutman stability theorem (recall that $\sum_{1}^{\infty} \delta_n < 1/8$) it is easily verified that $\{\bar{y}_i\}$ (\bar{y}_i has the same sense with respect to y_i as \bar{x}_i has with respect to x_i) is a basic sequence which is equivalent to $\{y_i\}$. Direct verification shows

that the basis constant of $\{\bar{y}_i\}$ is less than 5. So it will be enough to check that $\{\bar{y}_i\}$ is a BCBS. We begin with the weaker property. Namely, let

(1)
$$\sup\left\{ \left\| \sum_{1}^{n} t_{i_{k}}^{k} \bar{y}_{k} \right\| : n = 1, 2, \ldots \right\} < 1/10.$$

Let us check that the series $\Sigma t_{i_k}^k \bar{y}_k$ converges. We have

$$||T\bar{y}_k|| \le ||T(y_k - \bar{y}_k)|| + ||Ty_k|| \le (1 + ||T||)\epsilon(\{y_i\}_1^{k-1}) < 2\delta_{k-1}$$

and from (1) we get $|t_{i_k}^k| \leq 1, k = 1, 2, \ldots$ So the series $\Sigma t_{i_k} T \bar{y}_k$ converges. Put $x_o = \Sigma t_{i_k}^k T \bar{y}_k$. Let us show that for all $n = 1, 2, \ldots, x_o \in G_n$. We have

$$\begin{split} & \left\|\sum_{n+1}^{\infty} t_{i_k}^k T \bar{y}_k\right\| \le \sum_{n+1}^{\infty} \|T \bar{y}_k\| \le (1 + \|T\|) \sum_{n+1}^{\infty} \epsilon(\{y_i\}_1^{k-1}) \\ & \le 2 \sum_{n+1}^{\infty} \delta_{k-1} d(\{y_i\}_1^{k-1}) \le 2d(\{y_i\}_1^n) \sum_{1}^{\infty} \delta_k \le d(\{y_i\}_1^n)/4 \end{split}$$

Since $\Sigma_1^n t_{i_k}^k \bar{y}_k \in U(E)$, and by the definition of $d(\{y_i\}_1^n)$, we get that $x_o \in G_n$, $n = 1, 2, \ldots$ So $x_o \in \bigcap_1^\infty G_n \subset TE$ and therefore $\lim g_n(x_o)$ exists. Denoting $r_n = r(\{y_i\}_1^n)$ we have:

$$\begin{split} \|g_{r_{n}}(x_{o}) - \sum_{1}^{n} t_{i_{k}}^{k} \bar{y}_{k} \| \\ &= \|g_{r_{n}} \left(\sum_{1}^{\infty} t_{i_{k}}^{k} T \bar{y}_{k} \right) - g_{r_{n}} \left(\sum_{1}^{n} t_{i_{k}}^{k} T \bar{y}_{k} \right) + g_{r_{n}} \left(\sum_{1}^{n} t_{i_{k}}^{k} T \bar{y}_{k} \right) - \sum_{1}^{n} t_{i_{k}}^{k} \bar{y}_{k} \| \\ &\leq \|g_{r_{n}} \left(\sum_{1}^{n} t_{i_{k}}^{k} T \bar{y}_{k} + \sum_{n+1}^{\infty} t_{i_{k}}^{k} T \bar{y}_{k} \right) - g_{r_{n}} \left(\sum_{1}^{n} t_{i_{k}}^{k} T \bar{y}_{k} \right) \| \\ &+ \|g_{r_{n}} \left(\sum_{1}^{n} t_{i_{k}}^{k} T \bar{y}_{k} \right) - \sum_{1}^{n} t_{i_{k}}^{k} \bar{y}_{k} \|. \end{split}$$

But

$$\begin{split} & \left\|\sum_{n+1}^{\infty} t_{i_k}^k T \bar{y}_k\right\| \le \sum_{n+1}^{\infty} \|T \bar{y}_k\| \le 2 \sum_{n+1}^{\infty} \epsilon(\{y_i\}_1^{k-1}) \\ & \le 2t(\{y_i\}_1^n) \sum_{1}^{\infty} \delta_k \le 1/4\omega \left(g_{r_n}, \sum_{1}^n t_{i_k}^k T \bar{y}_k, \delta_n\right) \end{split}$$

Isr. J. Math.

and therefore

$$\left\|g_{r_n}(x_o)-\sum_{1}^{n}t_{i_k}^k\bar{y}_k\right\|<2\delta_n.$$

Now it is easily seen that the series $\sum t_{i_k}^k \bar{y}_k$ converges. Finally let $\sup\{\|\sum_{i_k}^n p_k \bar{y}_k\|: n = 1, 2, ...\} \leq 1/20$. Then $\sup|p_k| < 1/2$ and hence, for each integer k, there exists a number $t_{i_k}^k$ such that $|p_k - t_{i_k}^k| \leq \delta_k$. Thus

$$\sup \left\| \sum_{1}^{n} t_{i_{k}}^{k} \bar{y}_{k} \right\| \leq 1/4$$

and, as proved above, the series $\Sigma t_{i_k}^k \bar{y}_k$ (and hence also $\Sigma p_k \bar{y}_k$) converges. This completes the proof of implication $(1) \Rightarrow (2)$.

(2) \Rightarrow (3). It is evident that for every sequence $\{x_i\} \subset S(E)$ the series $\Sigma \epsilon(\{x_i\}_1^n)$ converges. To prove (2) \Rightarrow (3) assume the contrary, i.e. T is not G_{δ} -embedding. Then from [9] there exist a number $\delta > 0$ and a sequence $\{y_i\} \subset U(E)$ such that $||y_i - y_j|| \geq \delta, i \neq j$, but the sequence $\{Ty_i\}$ is dense in itself. Put $x_1 = y_1, e_o = x_1/||x_1||$ and choose an element y_{n_2} such that

$$||Ty_1 - Ty_{n_2}|| < \delta \epsilon(\{e_o\}).$$

Put $x_2 = y_{n_2}, e_{11} = (x_1 - x_2)/||x_1 - x_2||$. Then

(2)
$$||Tx_1 - Tx_2|| < \delta \epsilon(\{e_o\}), ||Te_{11}|| < \epsilon(\{e_o\}).$$

Using density of the sequence $\{Ty_i\}$ in itself again we choose an element y_{n_3} such that $||Tx_1 - Ty_{n_3}|| < \delta \epsilon(\{e_o, e_{11}\})$. Put $x_3 = y_{n_3}$ and $e_{21} = (x_1 - x_3)/||x_1 - x_3||$. Then

(3)
$$||Tx_1 - Tx_3|| < \delta \epsilon(\{e_o, e_{11}\}), ||Te_{21}|| < \epsilon(\{e_o, e_{11}\}).$$

Let y_{n_4} be such an element that $||Tx_2 - Ty_{n_4}|| < \delta \epsilon(\{e_o, e_{11}, e_{21}\})$. Denoting $x_4 = y_{n_4}, e_{22} = (x_2 - x_4)/||x_2 - x_4||$ we obtain

(4)
$$||Tx_2 - Tx_4|| < \delta\epsilon(\{e_o, e_{11}, e_{21}\}), ||Te_{22}|| < \epsilon(\{e_o, e_{11}, e_{21}\}).$$

The sequence $\{e_o, e_{ij}\}$ will be constructed in this way. By condition (2) of the theorem, $\{e_o, e_{ij}\}$ is BCBS. Let $\{z_i\}$ be the sequence $\{e_o, e_{ij}\}$ that is numerated

180

181

by one index and put $Y = [z_i]_1^{\infty}$. We shall show that $T|_Y$ is a G_{δ} -embedding. Let us introduce the new norm

$$|||y||| = \sup \left\|\sum_{1}^{n} a_i z_i\right\|, \quad y = \sum a_i z_i$$

in Y which is equivalent to the original one. Denote by $V = \{y \in Y : |||y||| \le 1\}$ the unit ball in the new norm. We will show that the image TV is closed in the space X. Put

$$u_m = \sum a_i^m z_i \in V, \quad m = 1, 2, \dots, \quad \lim T u_m = v.$$

Without loss of generality we can assume that for all i = 1, 2, ... there exists $\lim a_i^m = a_i$. It is evident that $\sup ||\Sigma_1^n a_i z_i|| \leq 1$. Since $\{z_i\}$ is a BCBS series $\sum a_i z_i$ converges to some element u. Hence $u = \sum a_i z_i \in V$. Fix ϵ and choose a number n such that $\sum_{n+1}^{\infty} \epsilon(\{z_i\}_1^{k-1}) < \epsilon/16$. There exists a number m such that, for all i = 1, ..., n, $|a_i^m - a_i| < \epsilon/(4n||T||)$. We have:

$$||Tu_m - Tu|| \le \left\|\sum_{i=1}^n (a_i^m - a_i)Tz_i\right\| + \left\|\sum_{n+1}^\infty (a_i^m - a_i)Tz_i\right\| < \epsilon.$$

Hence $\lim Tu_m = Tu, u \in V, v = Tu$ and therefore $v \in TV$. Thus $T|_Y$ is a semi-embedding and, since Y is separable, T is a G_{δ} -embedding. But the image $\{Tx_i\}$ of δ -separated sequence $\{x_i\} \subset U(Y)$ (remember that $\{x_i\} \subset \{y_i\}$) is dense in itself (see (2), (3), (4)). This is impossible [9]. So implication (2) \Rightarrow (3) is proved.

Implication $(3) \Rightarrow (1)$ is evident. The proof of the theorem is completed.

Remark 2: If an injection $T: E \to X$ of a separable Banach space E into a Banach space X is a G_{δ} -embedding, then T^{-1} belongs to the first Baire class (see [1, 6]).

Remark 3: We do not use the separability of the space E in the proof of implication $(1) \Rightarrow (2)$.

The following theorem gives the most general (in terms of injections) criterion for the existence of BCBS in a given separable Banach space without the assumption that T^{-1} belongs to the first Baire class.

THEOREM 2: Let $T: E \to X$ be an injection of a separable Banach space E into a Banach space X. If there exists a bounded subset $D \subset E$ which is dense in some ball of the space E and whose image TD is a G_{δ} -set in the space X, then $E \supset BCBS$.

If the inverse mapping T^{-1} belongs to the first Baire class, then by Proof: Theorem 1, $E \supset BCBS$. Suppose that T^{-1} does not belong to the first Baire class. Hence, by Proposition 1, the set $X - \operatorname{cl} U(E)$ is unbounded. Denote $V = \operatorname{cl} TU(E)$ and, by Z, the Banach space $\operatorname{lin} V$ with the set V as the unit ball. Let $T_1: E \to Z, T_2: Z \to X$ be natural embeddings. Since the set $X - \operatorname{cl} U(E)$ is unbounded, it follows that T_1 is not an isomorphic embedding. We will show that the inverse mapping T_1^{-1} belongs to the first Baire class, or equivalently (by Proposition 1): $Z - \operatorname{cl} U(E)$ is bounded in the space E. Without loss of generality we may assume that $E - \operatorname{cl} D \supset U(E)$. By the conditions of the theorem, there exists a sequence $\{G_n\}$ of open subsets of the space X such that $TD = \bigcap G_n$. Denote $D_n = T^{-1}(G_n)$ and let $y_o \in Z - \operatorname{cl} U(E), y = 1/2y_o$. It is evident that y belongs to the algebraic interior of the set $Z - \operatorname{cl} U(E)$. Hence there exists a number $\gamma > 0$ such that $y + \gamma U(E) \subset Z - \operatorname{cl} U(E)$. We will consider two cases. (1) For every $\delta \in (0, \gamma), D \cap (y + \delta U(E)) \neq \emptyset$. Then $y \in E - \operatorname{cl} D$ and therefore

$$\sup\{\|y_{o}\|: y_{o} \in Z - \operatorname{cl} U(E)\} \le 2 \sup\{\|z\|: z \in E - \operatorname{cl} D\}.$$

(2) There exists $\delta \in (0, \gamma), D \cap (y + \delta U(E)) = \emptyset$.

Then by $D = \bigcap D_k$ we have $(y + \delta U(E)) \subset \bigcup cD_k$. By the Baire category theorem, there exist a number m and an E-ball $W \subset y + \delta U(E)$ such that $cD_m \supset W$. Since the set cD_m is X-closed, we obtain

$$(5) X - \operatorname{cl} W \subset cD_m.$$

On the other hand,

$$W \subset y + \gamma U(E) \subset Z - \operatorname{cl} U(E) \subset Z - \operatorname{cl} D$$

hence $(X - \operatorname{cl} W) \cap D \neq \emptyset$ (the set $X - \operatorname{cl} W$ is a Z-ball in the space E and therefore it is a Z-neighborhood for every point from the algebraic interior of the set W). We have obtained the contradiction to (5).

Thus the set $Z - \operatorname{cl} U(E)$ is bounded and, by Proposition 1, inverse mapping T_1^{-1} belongs to the first Baire class. But $T_1D = \cap T_2^{-1}(G_n)$ and every set $T_2^{-1}(G_n)$ is open in the space Z. So by Theorem 1 (applied to the injection $T_1: E \to Z$), $E \supset BCBS$. The proof is completed.

The following corollary is a consequence of Theorem 2 and the Baire category theorem.

COROLLARY 1: Let $T: E \to X$ be an injection of a separable Banach space E into a Banach space X such that the image TU(E) of the unit ball U(E) of the space E is a $G_{\delta\sigma}$ -set in the space X. Then $E \supset BCBS$.

Remark 4: The restriction on the Borel type of the image TU(E) cannot be weakened (if we want to say anything about the space E) because for every injection $T: E \to X$ with the inverse from the first Baire class, for any separable Banach space E, the image TU(E) is an $F_{\sigma\delta}$ -set in X [7].

Now we pass to the characterization of separability of the dual space E^* in terms of the saturation by BCBS.

Let $W: \Sigma \to \mathcal{B}$ be a map of the set of all ordered finite subsets of the unit sphere $S(E^*)$ into the set \mathcal{B} of all w^* -neighborhoods of zero in the unit ball $U(E^*)$. We will say that the map W is a w^* -regulator of boundedly complete basic sequences (briefly: w^* -RBCBS) if and only if every sequence $\{f_n\} \subset S(E^*)$ possessing the property:

(**) For all
$$n = 1, 2, ..., f_{n+1} \in W(\{f_i\}_1^n)$$

is BCBS.

It is obvious that every w^* -null sequence $\{f_n\} \subset S(E^*)$ has a subsequence possessing the property (**). Let us note that according to the well-known result of Johnson and Rosenthal [13] every w^* -null sequence from the unit sphere of a separable dual space has a BCB subsequence. Thus the following theorem strengthens the result of Johnson and Rosenthal bringing it to a necessary and sufficient condition.

THEOREM 3: Let E be a separable Banach space. The following assertions are equivalent:

(1) The dual space E^* is separable.

(2) There exists a w^* -RBCBS.

Proof: (1) \Rightarrow (2). Let $A: l_2 \to E$ be some compact operator from the separable Hilbert space l_2 into the space E with dense range. Denote $T = A^*: E^* \to l_2$. Then T is a semi-embedding (the image of the unit ball is closed) and, by separability of the space E^* , it follows that T is a G_{δ} -embedding [1]. Now assertion (2) follows from Theorem 1 ((3) \Rightarrow (2)) since w^* -topology on the unit ball $U(E^*)$ coincides with the l_2 -topology.

 $(2) \Rightarrow (1)$. Let T be the operator introduced above. With the help of Theorem 1 $(2) \Rightarrow (3)$ it is easily verified that T is a G_{δ} -embedding (recall that the notion of G_{δ} -embedding is separable defined). We will prove that every w^* -compact subset $K \subset U(E^*)$ is w^{*}-huskable (i.e. for every $\epsilon > 0$ and every w^{*}-open subset D possessing the property $D \cap K \neq \emptyset$ there exists a w^{*}-open subset $D_1 \subset D$ such that $D_1 \cap K \neq \emptyset$ and diam $(D_1 \cap K) < \epsilon$). Let $\{f_i\}$ be a countable w^* -dense subset of the set K (the space E is separable) and D be an w^* -open subset of the space E^* such that $D \cap K \neq \emptyset$. Denote $K_1 = \|.\| - \operatorname{cl} \{f_i\}_1^\infty$ and $K_2 = \|.\| - \operatorname{cl} (K_1 \cap D)$. So K_2 is a non-empty (by w^* -density of the set K_1 in the set K and by $K \cap D \neq \emptyset$) separable bounded closed subset as well as K_1 . Since T is a G_{δ} -embedding there exists [9] a point of continuity of the map $T^{-1}|_{TK_2}$. Hence by compactness of the operator T there exists a point $g \in K_2$ and w^* -open neighborhood D_1 of g such that $D_1 \cap K_2 \neq \emptyset$ and diam $(D_1 \cap K_2) < \epsilon$. As the set $K_1 \cap D$ is dense in the set K_2 , there exists an element $g_1 \in (K_1 \cap D) \cap D_1$. Denoting $D_2 = D \cap D_1$ we get $D_2 \cap K_1 \neq \emptyset$. Since $K_1 \cap D_2 = (K_1 \cap D) \cap D_1 \subset K_2$ and $D_2 \subset D$, then $K_1 \cap D_2 \subset K_2 \cap D_1$ and by diam $(K_2 \cap D_1) < \epsilon$ we have diam $(K_1 \cap D_2) < \epsilon$. It is clear that diam $(w^* - \operatorname{cl}(K_1 \cap D_2)) < \epsilon$ also. But $w^* - \operatorname{cl}(K_1 \cap D_2) \supset (K \cap D_2)$ by w^* -density of the set $K \cap D_2$. Thus, diam $(K \cap D_2) < \epsilon$. So we have proved that every w^* -compact subset of the dual space E^* is w^* -huskable. By the result of Kenderov [14] the space E^* possesses the RN-property. But the space E is separable, therefore by a result of Stegall [19] the space E^* is separable too. The proof is completed.

2. Injections and c_o -subspaces

Let $T: E \to X$ be an injection of a Banach space E into a topological vector space X. We will say [8] that a subset $C \subset E$ is of the super-first category if and only if it can be covered by a countable union of X-closed and E-nowhere dense

sets. We will use the following theorem [8].

THEOREM 4: Let a Banach space E allow an injection $T: E \to X$ in some Hausdorff topological vector space X such that there exists a closed bounded solid (i.e. with non-empty interior) subset $A \subset E$ with the boundary ∂A of super-first category. Then $E \supset c_o$. Conversely, if a separable Banach space E contains a c_o -subspace, then there exist an injection $T: E \to X$ (into some Banach space X) even with T^{-1} from the first Baire class and an equivalent norm |||.||| on the space E such that the unit sphere S(E, |||.|||) (i.e. the boundary of the unit ball) is of super-first category.

The following theorem is based on Theorem 4.

THEOREM 5: Let $T: E \to X$ be an injection of a Banach space E into a Hausdorff topological vector space X. Let there exist a non-empty open bounded subset $G \subset E$ and a subset $C \subset G$ (possibly empty) of the super-first category such that the set $G \setminus C$ is a G_{δ} -set in the X-topology in the closure $E - \operatorname{cl} G$. Then $E \supset c_o$.

Proof: Denote $A = E - \operatorname{cl} G$. By the conditions of the theorem, $G \smallsetminus C = \bigcap G_n$ where each subset $G_n \subset A$ is X-open in A. Hence $A \smallsetminus (G \smallsetminus C) = (A \smallsetminus G) \bigcup C = \bigcup V_n$, where each subset $V_n \subset A$ is X-closed in A. Since G is an open subset of the space E, it follows that $\partial A = A \smallsetminus G$ and therefore $\partial A \subset \bigcup V_n$. It is clear that each subset V_n is X-closed in the set A and nowhere dense $(V_n$ is norm-closed and $V_n \subset \partial A \cup C$). To complete the proof it remains to apply Theorem 4.

Remark 4: If E is separable and U(E) is closed in the X-topology then the condition: " $(G \ C)$ is a G_{δ} -set in X-topology in the set $E - \operatorname{cl} G$ " is equivalent to the following one: " $(G \ C)$ is a G_{δ} -set in X-topology in the whole space E".

Before stating the corollary we introduce some notation. For subsets B and C of a Banach space E we will denote by

$$\delta(B,C) = \sup\{d(x,C): x \in B\}$$

the deviation of the set B from the set C.

COROLLARY 2: Let $T: E \to X$ be an injection of a Banach space E into a Hausdorff topological vector space X. Suppose that there exists a closed bounded

subset $A \subset E$ possessing the property: $\partial A \subset \bigcup V_n$, $A \supset \bigcup V_n \neq \emptyset$ where each subset V_n is an X-closed subset of the set A and $\lim \delta(V_n, \partial A) = 0$. Then $E \supset c_o$. Proof: Denote $G = A \supset \bigcup V_n$. It is clear that the subset $G \subset A$ is a G_{δ} -set in Xtopology on A. We will show that G is an open subset of the space E. Let $x \in G$. It is evident that $x \in (intA)$ (intA is the interior of the set A in E-topology) and therefore there exists a number r > 0 such that $x + 2rU(E) \subset (intA)$. Since for every $y + rU(E), d(y, \partial A) \ge r$ and $\lim \delta(V_n, \partial A) = 0$, it follows that there exists an integer m such that for every n > m, $V_n \cap (x + rU(E)) = \emptyset$. Denoting $\delta = \min \{1/2d(x, V_n), 1/2r: 1 \le n \le m\}$ we get $x + \delta U(E) \subset G$. Application of Theorem 5 ($C = \emptyset$) completes the proof.

In connection with Theorem 5 it is interesting to consider the class \mathcal{A} of all separable Banach spaces possessing the property: $E \in \mathcal{A}$ if and only if there exists an open bounded subset $G \subset E$ which is a G_{δ} -set in the space E in the weak topology.

PROPOSITION 2: A separable Banach space E belongs to the class \mathcal{A} if and only if there exists an open bounded subset $G \subset E$ which is a G_{δ} -set in the set $\|.\| - \operatorname{cl} G$ in w-topology.

Proof: The proof follows from the observation: $E \setminus (\|.\| - \operatorname{cl} G)$ is an open subset of the separable Banach space E and hence it can be covered by a countable union of closed (both in norm and weak topologies) balls.

Since the property $E \in \mathcal{A}$ is a hereditary one for subspaces of the space E, the next corollary follows from Theorem 5 ($C = \emptyset$).

COROLLARY 3: Each Banach space from the class \mathcal{A} contains an isomorphic copy of the space c_o hereditarily.

Let us note that the class \mathcal{A} is polar (but not opposite) to the class of Polish spaces [2, 18].

Remember that a Banach space is called polyhedral [15] if and only if the unit ball of every finite-dimensional subspace is a polyhedron.

PROPOSITION 3: Every separable polyhedral Banach space belongs to the class A.

Proof: According to [3] a separable polyhedral Banach space E possesses a countable boundary, i.e. there exists a sequence $\{f_i\} \subset S(E^*)$ of linear functionals such that, for every $x \in E$, there exists functional f_j for which $f_j(x) = ||x||$.

Let G = (intU(E)); then $G = \cap \{x \in E: f_i(x) < 1\}$ and therefore G is a G_{δ} -set in the space E in the w-topology.

We conclude this section by the following

Problem: Is the property $E \in \mathcal{A}$ inherited by quotient spaces of the space E? What about polyhedral space E?

3. Resume

Theorem 7 is a consequence of the results of previous sections (Theorem 2, Theorem 4, Theorem 5 $(C = \emptyset)$) and the following result of the author [5].

THEOREM 6: Let a separable Banach space E contain a BCBS. Then there exists a non-isomorphic semi-embedding $T: E \to X$ into some Banach space X.

THEOREM 7: Let E be a separable Banach space. Then the following assertions are equivalent:

(1) $E \in \mathcal{K}$

(2) There exist an injection $T: E \to X$ (into some Banach space X) and a non-empty bounded open subset $A \subset E$ such that either the image TA is of the type $G_{\delta\sigma}$ in the space X or the image TA is of the type G_{δ} in the image TE.

(3) There exist an injection $T: E \to Y$ (into some Banach space Y) and a nonempty bounded open subset $B \subset E$ such that either the image TB is of the type F_{σ} in the space Y or the image T(cB) is of the type F_{σ} in the image TE.

ACKNOWLEDGEMENT: The author is greatly indebted to the referee for many helpful suggestions.

References

- J. Bourgain and H.P. Rosenthal, Applications of the theory of semi-embeddings to Banach space theory, Journal of Functional Analysis 52 (1983), 149–188.
- [2] G.A. Edgar and R.F. Wheeler, Topological properties of Banach spaces, Pacific Journal of Mathematics 115 (1984), 317–350.
- [3] V.P. Fonf, On polyhedral Banach spaces, Matematicheskie Zametki 30 (1981), 627-634 (Russian); English Transl. in Mathematical Notes 30 (1981).
- [4] V.P. Fonf, On injections of Banach spaces with closed image of the unit ball, Funktsionalnyi Analiz i ego Prilozheniya 19 (1985), 87-88 (Russian); English Transl. in Functional Analysis and its Applications 19 (1985).

- [5] V.P. Fonf, On semi-embeddings and G_{δ} -embeddings of Banach spaces, Matematicheskie Zametki **39** (1986), 550–561 (Russian); English Transl. in Mathematical Notes **39** (1986).
- [6] V.P. Fonf, Dual subspaces and injections of Banach spaces, Ukrainski Matematicheski Zhurnal 39 (1987), 364-369 (Russian); English Transl. in Ukrainian Mathematical Journal 39 (1987).
- [7] V.P. Fonf, On Borelian type of the set of convergence of the sequence linear bounded operators in Banach space, Teoriya Funktsii, Funktsional'nyi Analiz ikh Prilozheniya 50 (1988), 90–98 (Russian); English Transl. in Journal of Soviet Mathematics 49 (1990), no. 6.
- [8] V.P. Fonf, Sets of the super-first category in Banach spaces, Funktsionalnyi Analizi i ego Prilozeniya 25 (1991), 66-69 (Russian); English Transl. in Functional Analysis and its Applications 25 (1991).
- [9] N. Ghoussoub and B. Maurey, G_{δ} -embeddings in Hilbert space, Journal of Functional Analysis **61** (1985), 72–97.
- [10] N. Ghoussoub and B. Maurey, G_{δ} -embeddings in Hilbert space (part 2), Journal of Functional Analysis **78** (1988), 271-305.
- [11] W.T. Gowers and B. Maurey, The unconditional basic sequence problem, preprint.
- [12] W.T. Gowers, A space not containing c_o, l_1 or reflexive subspace, preprint.
- [13] W.B. Johnson and H.P. Rosenthal, On w^* -basic sequences and their applications to the study of Banach spaces, Studia Mathematica **43** (1972), 77–92.
- [14] P. Kenderov, Dense strong continuity of pointwise continuous mappings, Pacific Journal of Mathematics 89 (1980), 111-130.
- [15] V. Klee, Polyhedral sections of convex bodies, Acta Mathematica 103 (1960), 243-267.
- [16] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces 1, Springer-Verlag, New York, 1977.
- [17] Ju.I. Petunin and A.N. Plichko, Theory of Characteristics of Subspaces and Its Applications, Kiev, 1980 (Russian).
- [18] H.P. Rosenthal, Weak*-Polish Banach spaces, Journal of Functional Analysis 76 (1988), 267-316.
- [19] C. Stegall, The Radon-Nikodym property in conjugate Banach spaces (part 2), Transactions of the American Mathematical Society 264 (1981), 507-519.