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ABSTRACT 

We study the connection between topological properties of subsets of a 

given Banach space and their images under linear, continuous one-to-one 

mappings on the one hand and the existence in a given Banach space 

of either a boundedly complete basic sequence (BCBS) or an isomorphic 

copy of co (co-subspace) on the other hand. We present criteria for the 

existence of a BCBS. They are deduced from new characterisations of G~- 

embeddings which we also present. We obtain a necessary and sufficient 

condition for separability of a dual Banach space in terms of saturation by 

BCBS. Criteria for the existence in a Banach space of a co-subspace are 

also presented. We describe the class of separable Banach spaces which 

contains either a BCBS or a co-subspace. 

In t roduc t ion  

The series of striking counterexamples that were constructed recently by Gowers 

and Maurey [11] and Gowers [12] completely dispersed all hopes of a simple linear- 

topological structure of infinite-dimensional Banach spaces. The most delicate 

conjecture: 

Every infinite-dimensional Banach space contains either a boundedly complete 

basic sequence (BCBS) or a subspace isomorphic to the space co (Co-Subspace) 

has been disproved also. 
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The main purpose of this paper is to describe the class/~ of separable Banach 

spaces that contains either a BCBS or a Co-Subspace. It turned out that the 

separable Banach space E belonging to the class/C is equivalent to the existence of 

an injection T: E -~ X (by injection we mean a linear continuous one-to-one map 

into some Banach space X with unbounded inverse T -1) with special properties. 

We will be interested in properties of the injections T that arc connected with 

Borelian type of images T A  (of some subsets A C E) both in the whole space X 

and in the image TE.  Let us note that topological properties of the set T A  in 

the image T E  coincide with those of the set A in the X-topology on the space E 

(by X-topology on the space E we mean the topology that  is generated by sets 

T - I ( G )  where G is an open subset of the space X; for example, an X-ball in the 

space E is the set T - I ( B )  where B is some ball in the space X).  To distinguish 

the X-topology and the original norm-topology on the space E, we will denote 

the latter by E-topology. 

The above-mentioned characterization of the class/C is contained in the fol- 

lowing theorem. 

THEOREM 7: Let E be a separable Banach space. Then the following assertions 

are equivalent: 

(1) E E K~. 

(2) There exist an injection T: E -~ X (into some Banach space X )  and a non- 

empty bounded open subset A C E such that either the image T A  is of the type 

G~o in the space X or the image T A  is of the type G~ in the image TE.  

(3) There exist an injection T: E -* Y (into some Banach space Y )  and a non- 

empty bounded open subset B C E such that either the image T B  is of the type 

Fo in the space Y or the image T(cB)  is of the type F~ in the image T E.  

We will examine this theorem by two approaches. The treatment from the 

BCBS is contained in part 1. The main tool here will be the notion of a 

G~-embedding that was introduced and studied by Bourgain and Rosenthal 

[1]. We recall that  an injection T: E ~ X of the Banach space E into the 

Banach space X is a G6-embedding iff the image T A  of every closed, bounded 

and separable subset A C E is a G~-set in the space X. Important  properties 

of G~-embeddings were obtained by Ghoussoub and Maurey [9,10]. The papers 

of Edgar and Wheeler [2] and Rosenthal [18] discuss closely related topics. W e  

will use some ideas from these papers as well as from previous papers of t h e  
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author [4-7]. 

The main results of part 1 are Theorem 1, which gives the characterization of 

G~-embeddings, and Theorem 2, which gives the most general criterion for the 

existence of BCBS in a given Banach space (in terms of injections). 

The approach to Theorem 7 from a Co-SUbspace is contained in part 2. We 

will use here a notion of a set of super-first category that was introduced by 

the author in his paper [8]. The main result of part 2 is Theorem 5, which 

characterizes Banach spaces that contain a Co-SUbspace. 

The short part 3 combines results of parts 1 and 2. 

We will assume that  all Banach spaces considered are real and infinite 

dimensional (unless specified otherwise). We use standard Banach space theory 

notations as can be found in [16], to which we refer the reader for unexplained 

terminology. By U(E) (S(E)) we denote the unit ball (unit sphere) of the linear 

normed space E. In part 1, T: E ~ X denotes an injection into the Banach 

space X. 

1. Injections and BCBS 

Let e: E --~ R+ be a map from the set Z of all ordered finite subsets of the unit 

sphere S(E) into the set of positive numbers R+. We will say that  the map e is a 

T-regulator of boundedly complete basic sequences (briefly: T-RBCBS) iff every 

sequence x,~ C S(E)  possessing the following property: 

(*) For every n -- 1 , 2 , . . . ,  IITx,~+ll[ <_ ~({xi}~) 

is BCBS. 

It is obvious that every X-null sequence {x~} C S(E) (i.e. a null-sequence in 

the X-topology) has a subsequence possessing the property (*). So existence of 

T-RBCBS implies: every X-null sequence from a unit sphere has a subsequence 

which is BCBS. 

We will use the following 

PROPOSITION 1: [17] Let E be a separable Banach space. The following asser- 

tions are equivalent: 

(1) T ' X *  is a norming linear manifold. 

(2) T -1 belongs to the first Baire class. 

(3) X - cl U(E) is a bounded subset of the space E. 
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Remark 1: If T ' X *  is 1-norming then the unit ball U(E) is X-closed. 

The following theorem is the main result of this part. 

THEOREM 1: Let T: E -~ X be an injection of the separable Banach space E 

into the Banach space X such that T -1 is a map of the first Baire class. The 

following assertions are equivalent: 

(1) There exists the bounded subset D C E such that its image T D  is a G~-set 

in X and E - cl D contains some E-ball. 

(2) There exists a T-RBCBS.  

(3) The map T is a G6-embedding. 

Proo~ Since T - I  is a map of the first Baire class the linear manifold T ' X *  

is norming. Without loss of generality we can assume that T ' X *  is 1-norming 

(and therefore (Remark 1) the unit ball U(E) is X-closed) and [[T][ _< 1. 

O O  
(1) =v (2). Let G = T D  = [')1 Gn, where each set Gn is an open subset of 

the space X. Without loss of generality we can assume that  E - cl D D 2U(E) 

and 0 C D. Denoting Dn = T-I (G~)  we have D = N~ °D~. Since T -1 is a 

map of the first Baire class, there exists a sequence {gn) of continuous mappings 

gn: T E  ~ E such that, for all x E E, lim gn(Tx) = x. Put 

w(g,x ,  5) = sup{a:  I Ix-  y[[ <_ a =~ I Ig(x ) -  g(Y)ll <- 5}. 

Let {hn} be a sequence of positive numbers such that  

5.  < i / s ,  H(1 + 5 . ) / ( 1  - 25.)  _< 2. 
1 1 

We begin the construction of the map e with n = 1. Let Xl E S(E); then there 

exists an element ~1 possessing the properties: 

(a) I[xl - xlH < 51. 

(b) There exists a 51-net {t15:1}~1 in the segment [-5:1, xl] which is contained 

in the set D1, i.e. 

{tlxl}~ ' C [-Xl,Xl] AD1 

(recall that the open set D1 is dense in the set 2U(E)). Put  

d(xl)  = d x (  { T t ~ l  }~ 1, OG1). 
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It is evident that there exists a number r(xl)  such that, for all i = 1, 2 , . . . ,  ll 

and m _> r(xl) ,  

[Igm(T(t~Sh)) - t15:1[[ < (~1" 

Denote 

t(xl) = min{w(gr(x~),t~21,51): i =  1,2 , . . . , /1} .  

Since the linear manifold T 'X*  is l-norming, there exists a linear functional 

hi E X* such that [[T*hll[ = 1 and (T*hx)(Xl) >_ (1 - 51). Finally, put 

~({xi }) = min {d(Xl ), t(xl )}5~(8l[hl [[ IITll) -1. 

Now we will define the map e on two-element subsets {Xl, x2} C S(E). Since 

the open set D2 is dense in the ball 2U(E) there exists a vector 22 possessing 

the properties: 

( a )  [Ix2 --  22[ [ " ( { [ ( { X l } ) .  

(b) There exists a 5~-net 2- t2 {t~ x2}1 in the segment [-2e, 22] which is contained in 

the set D2 and the set 

A(Xl, x2) : {tlxl -t- t2x2 C U(E): 1 < i < ll, 1 < j _< 12} 

is also contained in D2. Put 

d(xl, x2) = dx (TA(xl ,  x2), OG2). 

Let r(xl,  x2) be such a number that for all m >_ r(xl,  x2) and for all x E A(Xl, x2), 

[[gm(Tx) - xl[ < 52. Denote 

t(Xl,X2 ) ---- min {w(gr(~l,~2), x, ~2): x • A(xl ,  x2) }. 

Since the linear manifold T ' X *  is 1-norming, there exists a finite subset (hi }~2 C 

X* such that {T*hi}~ 2 C S(E*) and the set 

* rn 2 
{ ( T  hi)[[x,,x2]}l 

is a 52-net in the ball U([xl, x2]*). We denote by [x, y] the linear span of x and 

y. Finally, put 

, min = e({xl x2}) = l<k<2{d({xi}~), t({xi}~)}52(8[[T[]max {[[h/I]: i 1 , . . . ,  m2}) -1. 



178 V . P .  F O N F  Isr .  J .  M a t h .  

Continuing in such a way we construct the map e: E ~ R+. Now let the sequence 

{yi} C S(E) satisfy ][Ty~+I[[ _< e({yl}~) for all n = 1 , 2 , . . . .  We have to prove 

that {Yi} is a BCBS. At first we will check that {yi} is a basic sequence. Here 

we act standardly: 

II ~a,u~ll _< (1 - 5~)-lmax IT*hi a, yi I: 1 < i < m n  
1 

--(1-'n)-lmax{[r*hi (~1 aiYi) -Z*hi(an+xYn+l)l:l<i<mn } 

{ ) < ( 1 -  5n)- l (max IlZ*h~lill~a~y~]l: 1 < i  <mn  
1 

+ la,~+llmax{Ihi(ryn+l)l: 1 < i < ran}), 

but 

and 

n + l  

la,~+ll _< II ~ a,uill + II ~ a,y, ll 
1 1 

Ih~(Tyn+~)l <_ I[h~llllZyn+lll < 5,~. 

Therefore 

II Za,y, ll <- (1 - ~n) -~ ~ ,  a,y, II + 6o ~ a,Y, II + II a,y, 1 1 1 1 
and we have finally 

n n + l  

II Z a,u, II -< (1 + 5n) (1  - 2~n)-ll[ E a,u, ll. 
1 1 

Using the inequality 
OO 

H ( 1  + 5n)(1 - 2~n) -1 ~ 2 
1 

we get that  {yi} is a basic sequence with basis constant less than 2. By the 

Krein-Milman-Rutman stability theorem (recall that E~hn < 1/8) it is easily 

verified that {~i} (~i has the same sense with respect to yi as 5:~ has with respect 

to xi) is a basic sequence which is equivalent to {y~}. Direct verification shows 
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that the basis constant of {~0{} is less than 5. So it will be enough to check that 

{~} is a BCBS. We begin with the weaker property. Namely, let 

(1) sup { H ~ t'~f/k": n = l ' 2 ' " ' }  

Let us check that the series Et/k Yk converges. We have 

iITykli <_ Ilr(yk - Yk)[I + I{TykI{ _< (1 + Hrlf)e({yd~ -x) < 25a-~ 

and from (1) we get lti~l _ 1, k = 1, 2 , . . . .  So the series Eti~T~k converges. Put 

xo = EtkikTf/k. Let us show that for all n = 1 ,2 , . . . ,  xo E Gn. We have 

[[ E t~Tf/kll <- ~l ir fJkl l  <- (l + lITll) ~_,e({Y~}l ) 
n+l  n+I n+l  

2 E  k-1 ( { Y i } I )  "~ 2d({YiIr) 
n + l  I 

d Since Z~tkikf/k E U(E), and by the definition of ({Yi}l), we get that xo E Gn, 
n = 1, 2 , . . . .  So xo E ~ Gn C TE and therefore limg~(xo) exists. Denoting 

r,~ = r({yi}~) we have: 

k -  

1 

= [Ig~ t~T~k - g~ t~r~k + g~ t~ kT~k _ ti~Ykl 
1 

n+l  

1 

But 
oo oo 

]1E t~Tf/kll _< E IITYktl-< 2 E e({Y~}~-l) 
n + l  n + l  n--kl 

_< 2 t ({Y~Ir )ESk  < 1/4w g ~ . , E  t~,Tf/k, Sn 
1 1 
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and therefore 

1 

Now it is easily seen that the series Et~k~k converges. Finally let 

sup{HE~pk#kll: n = 1,2, . . .}  < 1/20. Then sup IPkl < 1/2 and hence, for each 

integer k, there exists a number ti~ such that IPk - t~] _< 6k. Thus 

1 

and, as proved above, the series Et~k~ (and hence also Epkflk) converges. This 

completes the proof of implication (1) ~ (2). 

(2) ~ (3). It is evident that  for every sequence {xi} C S (E)  the series 

Ee({x~}~) converges. To prove (2) ~ (3) assume the contrary, i.e. T is not 

G~-embedding. Then from [9] there exist a number 6 > 0 and a sequence {Yi } C 

U(E)  such that HY~ - Yjll -> 6, i # j ,  but the sequence {Ty i}  is dense in itself. 

Put Xl = Yl, eo = Xl/l lxl l l  and choose an element Y~2 such that 

IITyl - Tyn2 II < 6c({eo}). 

Put x2 = y,~2,e11 = (Xl - -  X 2 ) / ] ) X l  - -  X21]. Then 

(2) IITxl - Tx2II < 6e({eo}), IlTen]l < e({eo}). 

Using density of the sequence {Ty{} in itself again we choose an element Y~3 such 

that  I]TXl-TYn311 < 6e({eo, en} ) .  Put x 3 : Y~3 and e21 : (Xl - x 3 ) / H X l  - x 3  H. 

Then 

(3) IITxl - Tx311 < 6e({eo, e11}), IITe2111 < e({eo, e11}). 

Let Yn4 be such an element that  IITx2 - Tyn,]l < 6e({eo,en,e21}). Denoting 

x4 = Y~4, e22 = (x2 - x4)/llx2 - x411 we obtain 

(4) IITx2 - Tx411 < 6e({eo,en,e21}), IITe2211 < c({eo,ell,e21}). 

The sequence {eo, eij} will be constructed in this way. By condition (2) of the 

theorem, {eo, e~j } is BCBS. Let {z~} be the sequence {eo, e~j } that  is numerated 
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by one index and put Y = [zi]~. We shall show that  TIy  is a G~-embedding. 

Let us introduce the new norm 

n 

llly[ll-- sup H ~ a~z~l[, Y = ~ aizi 
1 

in Y which is equivalent to the original one. Denote by V = {y C Y: [[[y[[[ _< 1} 

the unit ball in the new norm. We will show that the image T V  is closed in the 

space X. Put  

u m =  E a ' ~ z ~  E V, m - -  1 , 2 , . . . ,  l imTum = v. 

Without loss of generality we can assume that for all i = 1, 2 , . . .  there exists 

l ima~ = a~. It is evident that  sup IIE~a~z~ll _< 1. Since {zl} is a BCBS series 

Eaizi  converges to some element u. Hence u = Eaizi C V.  Fix e and choose a 

number n such that E~+le({Zi}l k- l )  <: e/16. There exists a number m such that,  

for all i = 1 , . . .  ,n, la m - a i l  < e/(4nlITll). We have: 

n o o  

II Turn - Tull <-II E ( a ' ~  - ai)Tz~ll + [I E ( a ' ~  - a~)Tzill < ~" 
1 n+l  

Hence l imTum = Tu,  u C V ,v  = T u  and therefore v E T V .  Thus TIy  is a 

semi-embedding and, since Y is separable, T is a Ge-embedding. But the image 

{Tx~} of 5-separated sequence {xi}  C U ( Y )  (remember that{xi} C {Yi}) is dense 

in itself (see (2), (3), (4)). This is impossible [9]. So implication (2) =~ (3) is 

proved. 

Implication (3) =~ (1) is evident. The proof of the theorem is completed. | 

Remark 2: If an injection T: E ~ X of a separable Banach space E into a 

Banach space X is a G~-embedding, then T -1 belongs to the first Baire class 

(see [1, 6]). 

Remark 3: We do not use the separability of the space E in the proof of 

implication (1) =* (2). 

The following theorem gives the most general (in terms of injections) 

criterion for the existence of BCBS in a given separable Banach space without 

the assumption that T -1 belongs to the first Baire class. 
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THEOREM 2: Let T: E ~ X be an injection o[ a separable Banach space E into 

a Banach space X .  I[ there exists a bounded subset D C E which is dense in 

some ball o[ the space E and whose image T D  is a G~-set in the space X,  then 

E D B C B S .  

Proof." If the inverse mapping T -1 belongs to the first Baire class, then by 

Theorem 1, E D B C B S .  Suppose that  T -1 does not belong to the first Baire 

class. Hence, by Proposition 1, the set X -  c lU(E)  is unbounded. Denote 

V = cl T U ( E )  and, by Z, the Banach space linV with the set V as the unit ball. 

Let TI: E --~ Z, T2: Z ~ X be natural  embeddings. Since the set X - c lU(E)  

is unbounded, it follows that  T1 is not an isomorphic embedding. We will show 

that  the inverse mapping T11 belongs to the first Baire class, or equivalently (by 

Proposition 1): Z - c l  U(E) is bounded in the space E. Without loss of generality 

we may assume that  E - cl D D U(E).  By the conditions of the theorem, there 

exists a sequence {Gn} of open subsets of the space X such that  T D  = ~ Gn. 

Denote Dn = T - I ( G n )  and let Yo • Z -  c l U ( E ) , y  = 1/2yo. It  is evident that  

y belongs to the algebraic interior of the set Z - cl U(E).  Hence there exists a 

number "~ > 0 such that  y ÷ 7U(E)  C Z - cl U(E).  We will consider two cases. 

(1) For every ~ • (0, ~/), D A (y + ~U(E)) ~ 0. 

Then y • E - cl D and therefore 

sup{]iYo[l: yo • Z -  c lU(E)}  < 2 sup{[izi[: z • E -  clD}.  

(2) There exists ~ • (0,'~), D A (y -b $U(E))  = 0. 

Then by D -- N D k  we have (y + $U(E)) C UcDk.  By the Baire category 

theorem, there exist a number m and an E-ball  W C y + 5U(E) such that  

cDm D W. Since the set cDm is X-closed, we obtain 

(5) X - cl W C cDm. 

On the other hand, 

W C y + 7U(E)  c Z -  c lU(E)  c Z -  c lD 

hence (X - c lW) A D ¢ 0 (the set X - c lW is a Z-ball in the space E and 

therefore it is a Z-neighborhood for every point from the algebraic interior of the 

set W). We have obtained the contradiction to (5). 
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Thus the set Z - cl U(E) is bounded and, by Proposition 1, inverse map- 

ping T1-1 belongs to the first Baire class. But TID = nT~I(G~) and every set 

T~I(G,~) is open in the space Z. So by Theorem 1 (applied to the injection 

TI: E ~ Z), E D BCBS.  The proof is completed. | 

The following corollary is a consequence of Theorem 2 and the Baire category 

theorem. 

COROLLARY 1: Let T: E -+ X be an injection of a separable Banach space E 

into a Banach space X such that the image TU(E) of the unit ball U(E) of the 

space E is a G~a-set in the space X.  Then E D BCBS.  

Remark 4: The restriction on the Borel type of the image TU(E)  cannot be 

weakened (if we want to say anything about the space E) because for every 

injection T: E -~ X with the inverse from the first Baire class, for any separable 

Banach space E, the image TU(E)  is an F~-se t  in X [7]. 

Now we pass to the characterization of separability of the dual space E* in 

terms of the saturation by BCBS. 

Let W: E --~ /3 be a map of the set of all ordered finite subsets of the unit 

sphere S(E*) into the set /3 of all w*-neighborhoods of zero in the unit ball 

U(E*). We will say that the map W is a w*-regulator of boundedly complete 

basic sequences (briefly: w*-RBCBS) if and only if every sequence {fn} C S(E*) 

possessing the property: 

(**) For all n = 1, 2 , . . . ,  fn+l e W({f i}~)  

is BCBS. 

It is obvious that  every w*-null sequence {fn} C S(E*) has a subsequence 

possessing the property (**). Let us note that according to the well-known 

result of Johnson and Rosenthal [13] every w*-null sequence from the unit sphere 

of a separable dual space has a BCB subsequence. Thus the following theorem 

strengthens the result of Johnson and Rosenthal bringing it to a necessary and 

sufficient condition. 

THEOREM 3: Let E be a separable Banach space. The following assertions are 

equivalent: 

(1) The dual space E* is separable. 
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(2) There exists a w*-RBCBS. 

Proo~ (1) =~ (2). Let A: 12 ~ E be some compact operator from the separable 

Hilbert space 12 into the space E with dense range. Denote T = A*: E* --~ 

12. Then T is a semi-embedding (the image of the unit ball is closed) and, by 

separability of the space E*, it follows that T is a Ge-embedding [1]. Now 

assertion (2) follows from Theorem 1 ((3) ~ (2)) since w*-topology on the unit 

ball U(E*) coincides with the/2-topology. 

(2) ~ (1). Let T be the operator introduced above. With the help of Theorem 1 

((2) =~ (3)) it is easily verified that T is a G~-embedding (recall that  the notion 

of G~-embedding is separable defined). We will prove that every w*-compact 

subset K C U(E*) is w*-huskable (i.e. for every e > 0 and every w*-open subset 

D possessing the property D N K ~ O there exists a w*-open subset D1 C D such 

that DI OK ~ 0 and diam(D1 OK) <: c). Let {fi} be a countable w*-dense subset 

of the set K (the space E is separable) and D be an w*-open subset of the space 

E* such that D N K  ~ 0. Denote K1 = ] l- i]-cl{fi}~ and K2 = ]] .] l-cl(K1AD). 

So K2 is a non-empty (by w*-density of the set K1 in the set K and by KND ~ 0) 

separable bounded closed subset as well as K1. Since T is a G~-embedding there 

exists [9] a point of continuity of the m a p  T-11TK2. Hence by compactness of 

the operator T there exists a point g E K2 and w*-open neighborhood D1 of g 

such that  D1 N Ks ~ ~ and diam(D1 N/(2) < ~. As the set K1 n D is dense in 

the set K2, there exists an element gl E (K1 n D) n D1. Denoting D2 = D n D1 

we get D2 n K1 ~ 0. Since K1 N D2 = (K1 n D) n D1 C K2 and D2 C D, then 

K1 n D2 c K2 n D1 and by diam(K2 n D1) < e we have diam(K1 n D2) < e. It is 

clear that  diam(w* - cl (K1 N D2)) < e also. But w* - cl (K1 N D2) ~ (K N D2) 

by w*-density of the set K n D2. Thus, diam(K n D2) < e. So we have proved 

that  every w*-compact subset of the dual space E* is w*-huskable. By the result 

of Kenderov [14] the space E* possesses the RN-property. But the space E is 

separable, therefore by a result of Stegall [19] the space E* is separable too. The 

proof is completed. I 

2. Injections and co-subspaces 

Let T: E ~ X be an injection of a Banach space E into a topological vector 

space X. We will say [8] that a subset C C E is of the super-first category if and 

only if it can be covered by a countable union of X-closed and E-nowhere dense 
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sets. We will use the following theorem [8]. 

THEOREM 4: Let a Banacb space E allow an injection T: E --* X in some 

Hausdorff topological vector space X such that there exists a closed bounded 

solid (i.e. with non-empty interior) subset A C E with the boundary OA of 

super-first category. Then E D co. Conversely, i f  a separable Banach space 

E contains a co-subspace, then there exist an injection T: E ~ X (into some 

Banach space X )  even with T -1 from the first Baire class and an equivalent norm 

[[].[[[ on the space E such that the unit sphere S (E ,  [[1"1[[) (i.e. the boundary of 

the unit ball) is of super-first category. 

The following theorem is based on Theorem 4. 

THEOREM 5: Let T: E -~ X be an injection of a Banach space E into a 

Hausdorff topological vector space X .  Let there exist a non-empty open bounded 

subset G C E and a subset C C G (possibly empty) of the super-first category 

such that the set G \ C is a G~-set in the X-topology in the closure E - cl G. 

Then E D co. 

Proof  Denote A = E - cl G. By the conditions of the theorem, G \ C = [7 G,, 

where each subset Gn C A is X-open in A. Hence A \ ( G  \ C) = (A \ G) (J C = 

UVn, where each subset V,~ C A is X-closed in A. Since G is an open subset of 

the space E,  it follows that  OA = A \ G and therefore OA C ~J V,~. It is clear that  

each subset Vn is X-closed in the set A and nowhere dense (V,, is norm-closed 

and Vn C OA (J C). To complete the proof it remains to apply Theorem 4. | 

Remark 4: If E is separable and U(E) is closed in the X-topology then the 

condition: "(G \ C) is a G~-set in X-topology in the set E - cl G" is equivalent 

to the following one: "(G \ C) is a G~-set in X-topology in the whole space E" .  

Before stating the corollary we introduce some notation. For subsets B and C 

of a Banach space E we will denote by 

5(B, C) = sup{d(x, C): x e B} 

the deviation of the set B from the set C. 

COROLLARY 2: Let T: E --* X be an injection of a Banach space E into a 

Hausdorff topological vector space X .  Suppose that there exists a closed bounded 
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subset A c E possessing the property: OA c Uvn, A \ U vn ~ 0 where each 

subset Vn is an X-dosed subset of the set A and limh(Vn, OA) = O. Then E D Co. 

Proof'. Denote G = A \ U v~. I t  is clear that  the subset G C A is a G~-set in X-  

topology on A. We will show that  G is an open subset of the space E. Let x C G. 

It is evident that  x E (intA) (intA is the interior of the set A in E-topology) and 

therefore there exists a number r > 0 such that  x + 2rU(E) C (intA). Since 

for every y + rU(E),d(y, OA) >_ r and limh(V~,OA) = 0, it follows that  there 

exists an integer m such that  for every n > m, Vn A (x + rU(E)) = 0. Denoting 

5 = min{1/2d(x, Vn),i/2r: 1 < n < m} we get x + 5U(E) C G. Application of 

Theorem 5 (C = 0) completes the proof. | 

In connection with Theorem 5 it is interesting to consider the class .A of all 

separable Banach spaces possessing the property: E E A if and only if there 

exists an open bounded subset G C E which is a G6-set in the space E in the 

weak topology. 

PROPOSITION 2: A separable Banach space E belongs to the class A if and 

only if there exists an open bounded subset G C E which is a G6-set in the set 

[I-[I - cl G in w-topology. 

Proof: The proof follows from the observation: E \ ( [ [ . [ [ -c l  G) is an open subset 

of the separable Banach space E and hence it can be covered by a countable union 

of closed (both in norm and weak topologies) balls. | 

Since the property E E .A is a hereditary one for Subspaces of the space E,  the 

~next corollary follows from Theorem 5 (C = 0). 

COROLLARY 3: Each Banach space from the class ,4 contains an isomorphic 

copy of the space Co hereditarily. 

Let us note that  the class .A is polar (but not opposite) to the class of Polish 

spaces [2, 18]. 

Remember  that  a Banach space is called polyhedral [15] if and only if the unit 

ball of every finite-dimensional subspace is a polyhedron. 

PROPOSITION 3: Every separable polyhedral Banach space belongs to the 

class .4. 

Proof: According to [3] a separable polyhedral Banach space E possesses a 

countable boundary, i.e. there exists a sequence (f~} C S(E*) of linear function- 

als such that ,  for every x E E,  there exists functional f j  for which f j(x) = Ilxll. 
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Let G = (intU(E)); then G = N{x E E: f~(x) < 1} and therefore G is a G~-set 

in the space E in the w-topology. | 

We conclude this section by the following 

Problem: Is the property E E .A inherited by quotient spaces of the space E? 

What about polyhedral space E? 

3. R e s u m e  

Theorem 7 is a consequence of the results of previous sections (Theorem 2, 

Theorem 4, Theorem 5 (C = @)) and the following result of the author [5]. 

THEOREM 6: Let a separable Banach space E contain a BCBS. Then there 

exists a non-isomorphic semi-embedding T: E ~ X into some Banach space X. 

THEOREM 7: Let E be a separable Banach space. Then the following assertions 

are equivalent: 

(1) E e ~  

(2) There exist an injection T: E ~ X (into some Banach space X )  and a 

non-empty bounded open subset A C E such that either the image T A  is of the 

type G6o in the space X or the image T A  is of the type G6 in the image T E .  

(3) There exist an injection T: E ~ Y (into some Banach space Y )  and a non- 

empty bounded open subset B C E such that either the image TJ3 is of the type 

F~ in the space Y or the image T(cB) is of the type Fo in the image T E .  
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